
Journal of Biomolecular Structure and Dynamics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tbsd20

Usnic acid as potential inhibitors of BCL2 and
P13K protein through network pharmacology-
based analysis, molecular docking and molecular
dynamic simulation

K.K.V. Wong, Miah Roney, Nazim Uddin, Syahrul Imran, Ahmad Mahfuz
Gazali, Normaiza Zamri, Kamal Rullah & Mohd Fadhlizil Fasihi Mohd Aluwi

To cite this article: K.K.V. Wong, Miah Roney, Nazim Uddin, Syahrul Imran, Ahmad Mahfuz
Gazali, Normaiza Zamri, Kamal Rullah & Mohd Fadhlizil Fasihi Mohd Aluwi (2023) Usnic acid as
potential inhibitors of BCL2 and P13K protein through network pharmacology-based analysis,
molecular docking and molecular dynamic simulation, Journal of Biomolecular Structure and
Dynamics, 41:23, 13632-13645, DOI: 10.1080/07391102.2023.2178506

To link to this article:  https://doi.org/10.1080/07391102.2023.2178506

Published online: 16 Feb 2023.

Submit your article to this journal 

Article views: 402

View related articles 

View Crossmark data

Citing articles: 6 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20

https://www.tandfonline.com/journals/tbsd20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07391102.2023.2178506
https://doi.org/10.1080/07391102.2023.2178506
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2023.2178506?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2023.2178506?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2023.2178506&domain=pdf&date_stamp=16%20Feb%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2023.2178506&domain=pdf&date_stamp=16%20Feb%202023
https://www.tandfonline.com/doi/citedby/10.1080/07391102.2023.2178506?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/07391102.2023.2178506?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20


Usnic acid as potential inhibitors of BCL2 and P13K protein through network 
pharmacology-based analysis, molecular docking and molecular dynamic 
simulation 

K.K.V. Wonga,b, Miah Roneya,b , Nazim Uddinc, Syahrul Imrand, Ahmad Mahfuz Gazalia, Normaiza Zamria,  
Kamal Rullahe and Mohd Fadhlizil Fasihi Mohd Aluwia,b 

aFaculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia; bCentre for 
Bio-Aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia; cInstitute of 
Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh; dAtta-ur-Rahman Institute for 
Natural Product Discovery, UiTM Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia; eDrug Discovery and Synthetic Chemistry 
Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, 
Pahang, Malaysia 

Communicated by Ramaswamy H. Sarma    

ABSTRACT 
Usnic acid (UA) lately piqued the interest of researchers for its extraordinary biological characteristics, 
including anticancer activity. Here, the mechanism was clarified through network pharmacology,molec-
ular docking and molecular dynamic simulation. Sixteen proteins were selected through network 
pharmacology study as they are probable to interact with UA. Out of these proteins, 13 were filtered 
from PPI network analysis based on their significance of interactions (p< 0.05). KEGG pathway analysis 
has also aided us in determining the three most significant protein targets for UA, which are BCL2, 
PI3KCA and PI3KCG. Therefore molecular docking and molecular dynamic (MD) simulations throughout 
100 ns were performed for usnic acid onto the three proteins mentioned. However, UA’s docking score 
in all proteins is lower than their co-crystalised ligand, especially for BCL2 (� 36.5158 kcal/mol) and 
PI3KCA (� 44.5995 kcal/mol) proteins. The only exception is PI3KCG which has comparable results with 
the co-crystallised ligand with (� 41.9351 kcal/mol). Furthermore, MD simulation has also revealed that 
usnic acid does not stay fit in the protein throughout the simulation trajectory for PI3KCA protein evi-
dent from RMSF and RMSD plots. Nevertheless, it still poses good ability in inhibiting BCL2 and 
PI3KCG protein in MD simulation. In the end, usnic acid has exhibited good potential in the inhibition 
of PI3KCG proteins, rather than the other proteins mentioned. Thus further study on structural modifi-
cation of usnic acid could enhance the ability of usnic acid in the inhibition of PI3KCG as anti-colorec-
tal and anti-small cell lung cancer drug candidate.    
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1. Introduction 

Cancer is a disease where cells in the body grow uncontrol-
lably and spread to other parts of the body (NIH, 2021). It 
has been the leading cause of death worldwide ad nauseam 
(WHO, 2020). Although cancer treatments such as commonly 
used radiotherapy and chemotherapy (ACS, 2022) have been 
implemented for ages, yet the situation of cancer being a 
world-leading cause of death persists. Better cancer treat-
ment is often related to expensive costs, and it is unbearable 
for the majority of society. Thus, discoveries of small mole-
cules for cancer treatment (chemotherapy) have always been 
a struggle to invent more cost-effective drugs that the 
majority of the population could afford. 

With the complement of this effort, new technologies had 
to come into action to aid drug discoveries. Network 
pharmacology is a modern tool that could understand the 
complex interaction between ligands with multiple targets 
(Hopkins, 2007). A paradigm shift from "one drug, one 

target" to "multicomponent therapeutics/biological com-
plexes" is the main goal of the network pharmacology 
method (Belenahalli Shekarappa et al., 2019). This involves 
researching the various ways that medications can affect dif-
ferent tissues and cell types as well as the various ways that 
different crosstalk pathways can lead to varied activities 
within a single cell type (Liu et al., 2009). Different 
approaches can be used to illustrate how biological proc-
esses operate in the body. With network pharmacology, one 
could disclose the underlying relationship between natural 
products and cancers. Thus, finding the most suitable target 
for the selected chemical compound is possible. 

The collection of genes and proteins that interact with 
one another to produce biological processes, molecular func-
tions, and cellular components are known as protein-protein 
interaction complexes (PPI) or signalling pathways. When 
pathways that convey signals from one gene to another are 
activated or repressed, proteins and genes are represented 
as nodes in the KEGG (Kyoto Encyclopaedia of Genes and 
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Genomes) signalling pathways and signals and connections 
are represented as edges (Belenahalli Shekarappa et al., 
2019). Identification of hub nodes in large-scale free PPI net-
works depends critically on in silico biological network valid-
ation and analysis. In a complex biological system, the hub 
nodes are highly interconnected functional proteins that sus-
tain the global network and cell-cell communication. These 
nodes are related to one another through physical interac-
tions (Paris & Bazzoni, 2008). 

With the reasoning mentioned above, thus, selected usnic 
acid (UA) as our natural target product in this case. UA is a 
secondary metabolite from the lichen Usnea florida. Usnea is 
the most commonly used genus of lichens for traditional 
medicine (Crawford, 2015). It has been used in various daily 
products such as deodorant and toothpaste (Prateeksha 
et al., 2016). Other than that, it has been initially used to 
treat sore throats, colds, and bacterial infections (Prateeksha 
et al., 2016). In recent years, researchers discovered that UA 
poses a variety of bioactivities, such as anti-bacterial activity 
by targeting Mycobacterium tuberculosis (Bangalore et al., 
2020), antiviral activity by targeting Hepatitis C virus (Wei 
et al., 2020), and its potential anticancer properties with tar-
geting leukaemia, breast and prostate cancer (Nguyen et al., 
2021)fEbrahim, 2017 #57g. Currently, scientists are interested 
in researching potential anticancer inhibitory signalling path-
ways of UA. For instance, it has been found that UA blocks 
the Akt/mTOR signalling pathway, fEryilmaz, 2018 #56g how-
ever, there is no studies have been reported on others pos-
sible signalling pathways. Therefore, it is crucial to 
investigate other signalling pathways that may serve as tar-
gets for the treatment of cancers (Chen et al., 2014; Kwong 
& Wang, 2020). 

On the other hand, molecular docking simulations and 
molecular dynamic (MD) simulations are two of the predic-
tion tools that could be utilised to predict the interaction 
between proteins and ligands. Molecular docking simulations 
could be used to simulate the interaction between the pro-
posed ligand with the targeted proteins. By doing the simu-
lations, the prediction of interaction energy could be 
obtained and used to predict the efficiency of the proposed 
ligand (Hussein & Elkhair, 2021). While MD simulation pro-
vides the ability to simulate ligand-protein complex in a non- 
rigid condition and provide water molecules as surrounding 
to simulate the situation in the human body further (Singh 
et al., 2018). 

To investigate the pharmacological mechanisms of UA as 
a therapy for anti-colorectal and anti-small cell lung cancer, 
we used a network pharmacology approach in this study. In 
order to determine the probable mechanism of action of UA 
against colorectal and small cell lung cancer, protein-protein 
interaction (PPI) data were first gathered from the STRING 
database. Additionally, MD simulations of the best complexes 
were run against the selected proteins (BCL2, PI3KCA, and 
PI3KCG). Overexpression of the well-known pro-survival pro-
tein and critical apoptosis regulators are both regulated by 
proteins in BCL2. BCL2 is a characteristic that is frequently 
found in human adenocarcinomas and is responsible for the 
dysregulation of apoptosis, which renders tumour cells 

resistant to traditional cancer therapy drugs and prevents 
the death of cancer cells (Leibowitz & Yu, 2010). Additionally, 
increased anti-apoptotic Bcl-2 protein expression promotes 
tumorigenesis as well as the ability of MCF-7 breast cancer 
cells to migrate, invade, and spread (Kamath et al., 2016). 
Additionally, increased VEGF expression brought on by BCL2 
overexpression boosts neo-angiogenesis in human cancer 
xenografts (Liu et al., 2019). Additionally, PI3Ks (PI3KCA and 
PI3KCG) control a number of significant cellular functions 
through this phosphorylation, including growth, proliferation, 
and survival (Asati et al., 2016). Therefore, it appears that 
BCL2, PI3KCA, and PI3KCG are important chemotherapeutic 
targets for the treatment of breast cancer. In conclusion, our 
study used network pharmacology, docking, and MD simula-
tion to discover possible targets and pathways of UA as a 
treatment against colorectal and small-cell lung cancer. 

2. Results and discussions 

2.1. UA interacting with target proteins 

It is essential for understanding the target proteins on which UA 
acts. It was found that UA significantly (Interaction probability �
0.10) interacted with 16 target proteins (PTGES (Prostaglandin E 
synthase), ALOX5 (Arachidonate 5-lipoxygenase), PDE5A 
(Phosphodiesterase 5 A), EGLN1 (Egl-9 Family Hypoxia Inducible 
Factor 1), HSP90AB1 (Heat shock protein HSP 90-beta gene), 
HSP90B1 (Heat Shock Protein 90 Beta Family Member 1), 
HSP90AA1 (Heat shock protein HSP 90-alpha gene), CBR1 
(Carbonyl reductase 1), MTOR (Mammalian Target of Rapamycin), 
PIK3CG (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit gamma isoform), PIK3CA (Phosphatidylinositol-4,5- 
bisphosphate 3-kinase catalytic subunit alpha isoform), CXCR2 
(CXC chemokine receptor 2), PRKAA1 (Protein Kinase AMP- 
Activated Catalytic Subunit Alpha 1), NPY5R (Neuropeptide Y 
Receptor Y5), PPARG (Peroxisome proliferator-activated receptor 
gamma), and BCL2 (B-cell lymphoma 2)). The target proteins’ 
interactions with UA in was depicted in Figure 1. Cytoscape 3.8.2 
was used to analyse the interaction between UA and all target 
proteins (probability � 0.10). Based on the UA–protein targets 
relationships, it is now clear that UA is having interaction with 
the target proteins. These results indicate that UA plays substan-
tial biological and physiological activities. 

2.2. Target proteins are associated with protein-protein 
interaction (PPI) network 

PPI network plays substantial roles in molecular processes, 
and abnormal PPI is the basis of many pathological condi-
tions (Wong et al., 2009). Using STRING (Szklarczyk et al., 
2019) database, all target proteins (16) were mapped into 
the PPI network. Interestingly, 13 target proteins are involved 
in PPI, which have 25 edges, and an average node degree of 
3.12 with the PPI enrichment p-value is 7.67� 10� 07. In this 
PPI network, the larger the node degree, the stronger the 
relationship between the proteins corresponding to the 
node in this network, which indicates that the target proteins 
play a key role in the whole interaction network, the 
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important target protein. Only PDE5A, CXCR2, and NPY5R 
proteins are not included in PPI. 

Top-ranked target proteins with the best degree of inter-
action with other proteins are illustrated in Figure 2. Cytoscape 
3.8.2 was used to analyse the interaction among target proteins. 
Figure 2 shows that most of the HSP90AA1, PPARG, MTOR, 
PRKAA1 and HSP90AB1 are centrally located in the PPI networks 
with the best degree of interaction, indicating that this PPI net-
work is associated with biological activities. 

2.3. Target protein sets that are associated with the 
enrichment of KEGG pathways 

To further elucidate the relationship between target proteins 
and the pathways, 21 KEGG pathways that were significantly 
(False discovery rate (FDR)�0.05) associated with the target 
proteins (Table 1) were identified. These pathways were mainly 
involved in cancer (Prostate cancer, Pathways in cancer, Acute 

myeloid leukaemia, Colorectal cancer, Central carbon metabol-
ism in cancer, Glioma, Renal cell carcinoma, and small cell lung 
cancer) and cellular signalling (PI3K-Akt signalling pathway, 
Hypoxia-Inducible Factor (HIF-1) signalling pathway, Estrogen 
(ER) signalling pathway, Adenosine Monophosphate-Activated 
Protein Kinase (AMPK) signalling pathway, mTOR signalling 
pathway, Progesterone-mediated oocyte maturation, Insulin 
signalling pathway, and Erythroblastic Leukemia Viral 
Oncogene Homologue (ErbB) signalling pathway). Interestingly 
PIK3CA, BCL2, and PIK3CG genes are associated with the colo-
rectal cancer pathway (Figure 3) and small cell lung cancer 
pathway (Figure 4). Altogether, it indicates that UA may control 
the cancerous pathways by inhibiting PPI networks. 

BCL2 proteins are the key regulators of cell death, which 
induce cell death by apoptosis and have been the target for a 
wide range of cancers (Huang, 2000). The inhibition of BCL2 
can serve as the main ingredient of neutralizing the effect of 
these anti-apoptotic proteins, which will lead to the control of 
cancer cells (Vogler et al., 2009). Whereas PI3K is one of the 
upstream proteins that coordinate the intracellular signalling 
who reacts to surrounding stimulators (Noorolyai et al., 2019). 
Since PI3K protein is upstream of cell survivor signalling path-
ways, inhibiting this protein simply is effective to eliminate the 
target cancer cells. 

2.4. Molecular docking 

Consistent with the results from network pharmacology, fur-
ther investigation and validation of these results have been 
performed with the molecular docking simulation method. 
The simulation is a step to validify the effectiveness of UA in 
the inhibition of BCL2 and PI3K proteins. 

After moving on to the verification of the ability of UA 
using molecular docking, it was found that UA can inhibit the 
three proteins that have been deduced from our network 
pharmacology study. UA can form at least two hydrogen 
bonds with the target protein. At the same time, it is proven 
that hydrogen bonding is the essential key for the inhibition 
that occurs in proteins (Kostal, 2016), showing that UA poses 
the ability in inhibiting the three target proteins in the study. 

Based on the molecular docking simulation results, UA had 
taken on an expanded shape that fit precisely into the binding 
pockets of the target protein was observed (Figure 5a). Two 
hydroxyl hydrogen of benzene ring projected two hydrogen 
bonds with the residues of Asn B:169 and Trp B:173 in the dis-
tance of 2.40 Å and 2.17 Å, respectively. Other than that, two 
carbonyl groups from UA also mediated two hydrogen bonds 
with the residues of Arg B:124 and Trp A;173 in the distance of 
2.00 Å and 2.10 Å, respectively. The methyl group of UA 
formed two alkyl/pi-alkyl interactions with the residues of Leu 
B:172 and Trp B:173. Our study revealed that the binding affin-
ity of UA and the target protein is � 36.5158 kcal/mol (Table 2), 
which is much lower than the co-crystalised ligand. Thus, 
structural modification of UA should be the priority before 
making it a valuable drug candidate targeting the inhibitory 
effect of BCL2 protein. 

On the other hand, the co-crystallised ligand (Pubchem 
CID:71656179) had a binding affinity of � 73.5126 kcal/mol 

Figure 1. UA–target protein interaction network. The yellow node represents 
the UA, and the blue nodes represent the 16 target proteins.  

Figure 2. Protein-protein interaction (PPI) network of 13 interacted target 
proteins.  
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(Table 2) with the target protein where two hydrogen bonds 
were formed with Arg A;124 and Gly A:125 residues in the 
distance of 2.69 Å and 2.26 Å respectively (Figure 5b). 

In this simulation, UA has formed four hydrogen bonds 
with the protein BCL2, which has two more than the 

co-crystalised ligand. However, the interaction energy of UA 
and BCL2 is inferior to that of a co-crystalised complex. This 
might be due to less interaction between UA and the protein 
than in the co-crystallised complex. Hydrogen bonds might 
be important in inhibition, but the other interaction is 

Table 1. Enriched KEGG pathways that are significantly associated with target proteins of UA. 

KEGG PATHWAY Count p-value Genes FDR value  

hsa05215:Prostate cancer   7   1.68E-08 HSP90AA1, HSP90AB1, PIK3CA, BCL2, MTOR, PIK3CG, HSP90B1   1.25E-06 
hsa05200:Pathways in cancer   9   4.78E-07 EGLN1, HSP90AA1, HSP90AB1, PIK3CA, BCL2, PPARG, MTOR, PIK3CG, HSP90B1   1.77E-05 
hsa04151:PI3K-Akt signalling pathway   8   3.41E-06 HSP90AA1, PRKAA1, HSP90AB1, PIK3CA, BCL2, MTOR, PIK3CG, HSP90B1   8.41E-05 
hsa04066:HIF-1 signalling pathway   5   4.32E-05 EGLN1, PIK3CA, BCL2, MTOR, PIK3CG   7.22E-04 
hsa04915:Estrogen signalling pathway   5   4.88E-05 HSP90AA1, HSP90AB1, PIK3CA, PIK3CG, HSP90B1   7.22E-04 
hsa04152:AMPK signalling pathway   5   1.14E-04 PRKAA1, PIK3CA, PPARG, MTOR, PIK3CG   1.41E-03 
hsa04150:mTOR signalling pathway   4   2.41E-04 PRKAA1, PIK3CA, MTOR, PIK3CG   2.55E-03 
hsa04914:Progesterone-mediated oocyte maturation   4   7.97E-04 HSP90AA1, HSP90AB1, PIK3CA, PIK3CG   7.37E-03 
hsa04931:Insulin resistance   4   1.49E-03 PRKAA1, PIK3CA, MTOR, PIK3CG   1.23E-02 
hsa04910:Insulin signalling pathway   4   3.01E-03 PRKAA1, PIK3CA, MTOR, PIK3CG   2.23E-02 
hsa04930:Type II diabetes mellitus   3   4.72E-03 PIK3CA, MTOR, PIK3CG   3.18E-02 
hsa04141:Protein processing in endoplasmic reticulum   4   5.33E-03 HSP90AA1, HSP90AB1, BCL2, HSP90B1   3.29E-02 
hsa05221:Acute myeloid leukaemia   3   6.39E-03 PIK3CA, MTOR, PIK3CG   3.42E-02 
hsa00590:Arachidonic acid metabolism   3   7.54E-03 CBR1, ALOX5, PTGES   3.42E-02 
hsa05210:Colorectal cancer   3   7.78E-03 PIK3CA, BCL2, PIK3CG   3.42E-02 
hsa04210:Apoptosis   3   7.78E-03 PIK3CA, BCL2, PIK3CG   3.42E-02 
hsa05230:Central carbon metabolism in cancer   3   8.28E-03 PIK3CA, MTOR, PIK3CG   3.42E-02 
hsa05214:Glioma   3   8.53E-03 PIK3CA, MTOR, PIK3CG   3.42E-02 
hsa05211:Renal cell carcinoma   3   8.78E-03 EGLN1, PIK3CA, PIK3CG   3.42E-02 
hsa05222:Small cell lung cancer   3   1.43E-02 PIK3CA, BCL2, PIK3CG   5.0E-02 
hsa04012:ErbB signalling pathway   3   1.49E-02 PIK3CA, MTOR, PIK3CG   5.0E-02  

Figure 3. PIK3CA, BCL2, and PIK3CG genes are associated with the colorectal cancer pathway (red circle with asterisk sign).  
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equally essential when coming to the placement in the 
pocket of protein (Beshnova et al., 2017). Other interactions 
such as hydrophobic interactions are also accounted for in 
calculating the binding affinity of the ligand. Since there is a 

lack of other interactions between UA and the target protein, 
it results in weaker interaction energy than it could have 
been. Besides, the mixing of strong and weaker hydrogen 
bonds may also lower the binding affinity of the complex 

Figure 4. PIK3CA, BCL2, and PIK3CG genes are associated with the small cell lung cancer pathway (red circle with asterisk sign).  

Figure 5. Interaction analysis of (a) UA and; (b) co-crystalised ligand with the target protein of BCL-2 (PDB ID: 4MAN).  

Table 2. Molecular docking results of BCL2 with the co-crystallised ligand and UA. 

Compound 
CDOCKER interaction  

energy 
Number of  

hydrogen bond 
Minimum distance of 

hydrogen bond Amino acid residues  

UA � 36.5158 kcal/mol   4 2.00 Å Arg B:124, Asn B:169, Leu B:172, Trp A:173, Trp B:173 
Co-crystallised ligand � 73.5126 kcal/mol   2 2.26 Å Glu B:36, Phe A:121, Phe B:121, Thr A:122, Arg A:124, 

Arg B:124, Gly A:125, Pro A:165, Pro B:165, Leu 
A:172, Trp B:173, Glu A:176, Glu B:176  
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(Chen et al., 2016). Hence, further optimisation of the struc-
ture of UA could greatly improve its ability in inhibiting the 
BCL2 protein. 

When interacting with PI3KCA protein, UA demonstrates 
better fitting than BCL2 (Figure 6a). Two carbonyl group from 
the UA has mediated two different hydrogen bonds with the 
amino acid residue LYS A:802 in the distance of 1.86 Å and 
2.20 Å, respectively. The oxygen from the furan group in UA 
also projected a hydrogen bond with the amino acid residue 
SER A:774 with a distance of 2.35 Å. Besides hydrogen bond-
ing, UA also formed several alkyl bonds with other amino acid 
residues (Ile A:932, Val A:850, Ile A:848, Ile A:800, Pro A:778 
and Met A:772) from the benzene group and methyl group. 
The binding interaction energy obtained from molecular dock-
ing simulation was � 44.5995 kcal/mol, which is also a huge 
difference compared to the co-crystalised ligand. However, as 
mentioned before, it is possible that structural modification of 
UA could further enhance the inhibitory effect of UA towards 
this particular protein for the anticancer treatment of colorec-
tal cancer and small-cell lung cancer. 

On the other hand, the co-crystallised ligand (Pubchem 
CID:124193915) had � 67.3009 kcal/mol binding affinity to 
the target protein with eight hydrogen bonds with Ser 
A:854, Arg A:770, Val A:851, Asp A:933, Asp A:805, Asp A:810, 
Lys A:802 and Ser A:774 residues in the distance of 2.63 Å, 
1.97 Å, 2.05 Å, 2.83 Å, 2.53 Å, 2.08 Å, 2.11 Å, 2.19 Å, respectively 
(Table 3 and Figure 6a). 

In this simulation, UA had formed three hydrogen bond 
interactions with the protein, while the co-crystalised ligand 
had as many as eight hydrogen bonds. Although the co-crys-
talised ligand forms a much more hydrogen bond with the 
target protein, the interaction energy between the ligand 
and target protein is not as much higher than UA as com-
pared to the BCL2 protein. As mentioned before, the opti-
mised hydrogen bond is the requirement of enhancing the 
binding affinity of the ligand towards a protein, thus, a large 
number of hydrogen bonds from co-crystalised ligand plays 

a negative effect on the binding interaction. Besides, the 
minimum length of hydrogen bond formed between UA and 
the residue LYS A:802 is 1.86 Å, which emphasised that this 
hydrogen bond formation is more optimised than a co-crys-
talised ligand. From this observation, it is suggested that UA 
is docking into the target protein with a niche position; 
because of this, UA can form the optimised hydrogen bond 
with the amino acid residue. Other than that, the more mini-
ature the length of the hydrogen bond can cause an 
increase in interaction energy between the ligand and pro-
tein (Jiang & Lai, 2002). 

The UA compound took on an expanded shape that fit 
precisely into the binding pockets of the target protein. One 
hydroxyl hydrogen of the benzene ring projected two hydro-
gen bonds with the residues of Asp A:964 and Lys A:833 in 
the distance of 2.20 Å and 1.99 Å, respectively. The methyl 
group of UA formed two alkyl/pi-alkyl interactions with the 
residues Pro A:810 and Met A:804. Several other alkyl/pi-alkyl 
interactions are formed from the interaction of the benzene 
ring of UA with amino acid residues Ile A:879, Ile A:963 and 
Ile A:831. The study revealed that UA had � 41.9351 kcal/mol 
binding affinity with the target protein, which is less of a dif-
ference to the co-crystalised ligand as compared to BCL2 
and PI3KCA proteins. This indicates that UA might have great 
inhibitory activity against the target protein (PI3KCG) and the 
structurally modified derivatives could be valuable drug can-
didates against colorectal cancer as well as small cell lung 
cancer by targeting PI3KCG protein (Table 4 and Figure 7a). 

Meanwhile, the co-crystallised ligand (Puchem CID:53327269) 
had � 50.8015 kcal/mol binding affinity to the target protein with 
three hydrogen bonds with amino acid residues with their dis-
tance Lys A:802 (2.28 Å), Val A:882 (2.01 Å and 2.05 Å) and Lys 
A:833 (2.55 Å and 2.76 Å). 

While in this simulation, the interaction energy of the UA 
with the target protein is proximate to the co-crystalised lig-
and. However, the co-crystalised ligand has a slight advan-
tage of having more and better-optimised hydrogen bonds 

Figure 6. Interaction Analysis of (a) UA and; (b) co-crystallised ligand with the target protein of PI3KCA (PDB ID: 7K6M).  
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and other hydrophobic interactions with the target protein. 
As mentioned before, further modification of UA might make 
UA much more effective than the co-crystalised ligand, which 
also leads to being a potential drug candidate. 

2.5. Molecular dynamic simulation 

While molecular docking simulation is a tool of simulation 
used to determine the binding affinity of ligands in a protein, 
molecular dynamic (MD) simulation is the simulation to 

simulate the ligand in a protein within a set time with the add-
ition of surrounding water to it. 

Using the Molecular Mechanics Poisson-Boltzmann Surface 
Area (MMPBSA) method, the MD simulation trajectories com-
puted the binding free energies of the proposed molecules 
and the target proteins (Hou et al., 2011). It is shown that, for 
any protein-ligand combination, binding energy calculated 
using the MMPBSA approach can be regarded as more accur-
ate than the Glide score value. Here, the stronger the binding 
between the ligand chemical and the targeted protein com-
plex, the bigger the negative free energies of binding value 
(Table 5). The results clearly showed that the combination of 

Table 3. Molecular docking results of PI3KCA protein with the co-crystallised ligand and UA. 

Compound CDOCKER interaction energy 
Number of  

hydrogen bond 
Minimum distance of 

hydrogen bond Amino acid residues  

UA � 44.5995 kcal/mol   3 1.86 Å Ser A:774, Lys A:802, Ile A:932, Val 
A:850, Ile A:848, Ile A:800, Pro 
A:778, Met A:772 

Co-crystallised ligand � 67.3009 
kcal/mol   

8 1.97 Å Ser A:854, Arg A:770, Val A:851, Asp 
A:933, Asp A:805, Asp A:810, Lys 
A:802, Ser A:,774, Trp A:780, Val 
A:850, Met A:922, Ile A:932, Ile 
A:848, Ile A:800  

Table 4. Molecular docking results of PI3KCG with the co-crystallised ligand and UA. 

Compound CDOCKER interaction energy 
Number of  

hydrogen bond 
Minimum distance of 

hydrogen bond Amino acid residues  

UA � 41.9351 
kcal/mol   

2 1.99 A Lys A: 833, Asp A:964, Ile A:879, Ile 
A:963, Ile A:831, Pro A:810, Met 
A:804, Ser A:806 

Co-crystallised ligand � 50.8015 
kcal/mol   

4 2.01 Lys A:802, Val A:882, Lys A:833, Trp 
A:812, Ile A:831, Ile A:963, Ala 
A:885, Ile A:881, Tyr A:867, Asp 
A:964, Asp A:841, Asp A:836, Met 
A:953, Ile A;879  

Figure 7. Interaction Analysis of (a) UA and; (b) co-crystalised ligand with the target protein of small cell lung cancer (PI3KCG) (PDB ID: 6C1S).  

13638 K. K. V. WONG ET AL. 



UA and 6C1S protein had a strong binding free energy of 
� 13.65 kcal/mol. The binding free energy of the UA with the 
4MAN and 7K6M protein complex, in comparison, was found 
to be � 1.22 kcal/mol and � 2.01 kcal/mol. As a result, UA was 
determined to have a higher binding affinity for the target 
proteins based on estimates of free binding energy, leading to 
the conclusion that the suggested molecule, UA had the 
potential anti-cancer properties against the PI3K and BCL2 
proteins. 

Based on the evidence shown on the Root Mean Square 
Deviation (RMSD) plots (Figure 8(a)), the protein is told to be 
stabilised at around 7.0 Å after a considerable fluctuation 
from 7.5 Å to 12 Å, indicating that that protein is undergoing 
conformational changes during the simulation. However, the 
stabilisation towards the end of the simulation shows that 
the protein overall is stable. On the same plots, the RMSD of 
the ligand in the ligand-protein complex indicates that the 
ligand is following the conformational changes of the back-
bone from the protein, which provides information about 
where the protein is showing its binding activity within the 
binding site of the protein. 

On the Root Mean Square Fluctuation (RMSF) plot shown 
in Figure 8(b), it is shown that the fluctuations of the amino 
acid residues are between 1 Å to 8 Å. Besides, the N and C 
terminals are generally having higher fluctuation than any 
other rigid structures like alpha helices and beta strands in 
the protein. This indicates that the N and C terminals of the 
structures are constantly changing within the protein struc-
ture. Similarly, the RMSF plot of the ligand (Figure 8(c)) 
showed that the RMSF of the ligand residues is between 6- 
7 Å, indicating that the whole ligand frequently fluctuates 
within the simulation. 

Other than that, the protein-ligand contacts shown in the 
histogram (Figure 8(d)) reveal that the ligand has multiple 
interactions with the protein, with the majority forming 
water bridges. Water bridges are generally hydrogen bonds, 
with slightly less strictly attached than hydrogen bonds. 
However, the strength of water bridges is comparable with 
conventional hydrogen bonds (Utas et al., 2006). Other than 
that, it also forms multiple hydrogen bonding within the 
binding pocket, indicating that the ligand is generally very 
stable within the protein’s binding pocket. 

Consecutively, the protein-ligand contact plots (Figure 
8(e)) show the nature of protein and ligand within the MD 
simulations. At the same time, the top plot indicates the 
major interaction between ligand and protein that would 
result in the stability of interaction, such as hydrophobic 
interactions and water bridges occurring over the simulation. 
The trajectory is stabilised throughout the 100 ns while peak-
ing at 45 ns, revealing that the protein and ligand have sig-
nificant interactions throughout the 100 ns of simulations. 

While the bottom panel shows the residues of protein that 
are responsible for the interaction with the ligand. The 
amino acid residue Arg A:124. Arg B:124 and Asn B:169 are 
the most active sites that are in tally with our docking simu-
lation result. Besides that, Figure 8(f) also showed that the 
ligand has a hydrogen bonding with Arg A:124 and hydro-
phobic interactions with the residue Pro B:120, Phe A:121 
and Pro A:120 more than 30% of the simulation trajectory. 

Besides the BCL2 protein, MD simulations on the PI3KCG 
protein were also run, which is demonstrated in Figure 9. 
The RMSD of the protein (Figure 9(a)) is pretty much stable 
and similar to the one of BCL2. However, the RMSD plot of 
ligand (Figure 9(a)) showed a significant variant with the pro-
tein RMSD, where the plot went up to 20 Å. This result 
reveals that the distance of ligand travels away from the 
backbone of the protein is significant, indicating that the lig-
and is very likely to be diffused away from the binding 
pocket of the protein starting from 35 ns. Thus, this plot has 
given us information that the ligand might not be stable in 
the binding pocket of the protein, leading to the diffusion of 
the ligand away from the protein. 

Figure 9(b) is the RMSF plot for protein PI3KCA; it shows 
that the fluctuation of the amino acid residue index is 
between 0.6 Å to 6 Å. Similar to the previous proteins, the N 
and C terminals generally have higher fluctuation than any 
other rigid structure like alpha helices and beta strands in the 
protein. Nevertheless, when it comes to the RMSF plot of the 
ligand (Figure 9(c)) showed significant fluctuation (5-10 Å) 
throughout the whole simulation for the whole ligand, which 
indicates that the ligand does not sit well within the binding 
pocket of the protein, while the simulation is going on. 

Meanwhile, the protein-ligand contacts histogram (Figure 9(d)) 
reveals that UA and protein have water bridges and hydrogen 
bonds as the majority of interactions. Water bridges and hydro-
gen bonds showed a dominant fraction of the interaction 
between ligands and proteins. Even though these two interac-
tions dominate the simulations’ interactions, they do not have 
high uptime during the whole simulations occurred. This might 
explain why the ligand is not sitting within the protein’s binding 
pocket consistently. 

Carrying on with the plots (Figure 9(e)) the total contacts 
between the protein and ligand are stabilised on 5 interac-
tions at the 100 ns time while peaking on the initial trajec-
tory, specifying that the ligand is drifting away from the 
protein, thus lowering down the interaction number. At the 
same time, the bottom plot reveals that the amino acid resi-
due Arg A:770 is the only protein that showed a consistent 
ligand interaction throughout the simulations. The other 
amino acid residues did form some interactions with the lig-
and. However, they are not consistent enough to maintain 
the interaction with the ligand throughout the whole simula-
tions, indicating that the ligand might be rotating within the 
binding pocket of protein while Arg A:770 served as the 
centre of rotation. In addition, Figure 9(f) also reveals that 
only Arg A:770 and Lys A:802 are having significant inter-
action with the ligand while the rest of the residues do not 
seem to have interaction exceeding 30% of the time. 
Nevertheless, compared with the docking simulation results, 

Table 5. MM/PBSA calculation by Maestro application of Schrodinger package 
software. 

Protein PDB ID Compound MM/PBSA DG Bind Score (kcal/mol)  

BCL2 4MAN UA   � 1.22 
PI3KCA 7K6M UA   � 2.01 
PI3KCG 6C1S UA   � 13.65  
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only the amino acid residue Lys A:802 seems to be tallying 
with the findings. This variation indicates that UA could not 
serve as a consistent inhibitor of PI3KCA protein. 

While the results of the PI3KCA complex seem to excel in 
molecular docking simulation, it fails to persist in MD simula-
tion. This is an example of why experimentation results often 
seem off from what was simulated by using computers. The 
reason for this case is the addition of surrounding water 
while the simulation is running, causing much more variable 
changes to happen in the simulation. Thus, it is concluded 
that UA is not suitable for use as an inhibitor for PI3KCA pro-
tein unless further optimisation of its structure could 
improve its ability to stay niche within the binding pocket of 
the protein. 

Another variation of PI3K protein, PI3KCG is also being 
tested with MD simulation (Figure 9). Similarly, according to 
the RMSD plot (Figure 10(a)), the protein is stabilised around 
2.8 A, indicating that the protein is generally stable through-
out the simulation since the fluctuation does not exceed 
1-3 Å. Unlike the previous simulation, the ligand RMSD plot 
of this simulation is stabilised onto 3 Å after a fluctuation at 
65 ns. Since the fluctuation of the ligand is not significantly 
higher than that of the protein, it could be concluded that 
the ligand is stabilised within the protein’s binding pocket. 

The RMSF plot shown in Figure 10(b) shows that the fluc-
tuations of the amino acid residues are between 0.6 Å to 
4.8 Å. Fluctuation in the plot is similar to the previous two 
simulations, where N and C terminals generally have higher 

Figure 8. The stability results from BCL2-UA complex by MD simulations at 100 ns trajectory (a) Protein and Ligand RMSD (Å) with time frame over 100 ns; 
(b)Protein RMSF (Å) plot of protein structural variation from the backbone over the trajectory of 100 ns; (c) Ligand RMSF (Å) plot of 2D ligand structure fluctuation 
with respect to protein over the trajectory of 100 ns; (d) Histogram showing the proportion of protein-ligand interactions; (e) Protein-ligand contacts; top panel 
shows total contacts throughout the trajectory of 100 ns; the bottom panel shows the corresponding amino acid residue responsible for the number of interaction 
with orange colour scale on left; (f) A schematic of detailed ligand atom interactions that occur more than 30.0% of the simulation with the amino acid residues. 
Purple amino acid residues form charged (negative) interactions with ligands; Green forms hydrophobic interactions.  
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fluctuation than any other rigid. Similarly, the RMSF plot of 
the ligand (Figure 10(c)) showed that the RMSF of the ligand 
residue is between 1-3 Å, indicating that this ligand does not 
oscillate much within the binding pocket of protein during 
the simulations. 

Besides that, the protein-ligand contacts histogram 
(Figure 10(d)) also reveals that UA and protein have multiple 
interactions such as water bridges, ionic bonds and hydro-
gen bonds as the majority of interactions. Unlike the previ-
ous two simulation results, this protein complex has a 
significant ionic bond interaction during the simulations, sug-
gesting that the binding affinity of UA could be significant 
even without much other interaction going on. 

Carrying on with the plots (Figure 10(e)), the trajectory is 
said to be stabilised throughout the 100 ns while peaking at 
55 ns, specifying that the protein and ligand have significant 
interactions throughout the 100 ns of simulations. At the 
same time, the bottom plot reveals that the amino acid resi-
due Ser A:806, Lys A:808, Lys A:833 and Asp A:964 have 
interacted with the ligand consistently throughout the 100 ns 
simulations. Other than that, Asp A:964 is shown to be hav-
ing the most interaction with the ligand within the 100 ns of 
simulations. The results shown are also similar to the result 
obtained from docking simulations. In addition, Figure 10(f) 
also showed that the UA is having charged interaction with 
Glu A:880, Asp A:964, Lys A:808 and Lys A:833 with the 

Figure 9. The stability results from PI3KCA complex by MD simulations at 100 ns trajectory (a) Protein and Ligand RMSD (Å) with time frame over 100 ns; 
(b)Protein RMSF (Å) plot of protein structural variation from the backbone over the trajectory of 100 ns; (c) Ligand RMSF (Å) plot of 2D ligand structure fluctuation 
with respect to protein over the trajectory of 100 ns; (d) Histogram showing the proportion of protein-ligand interactions; (e) Protein-ligand contacts; top panel 
shows total contacts throughout the trajectory of 100 ns; the bottom panel shows the corresponding amino acid residue responsible for the number of interaction 
with orange colour scale on left; (f) A schematic of detailed ligand atom interactions that occur more than 30.0% of the simulation with the amino acid residues. 
Purple amino acid residues form charged (negative) interactions with ligands; Orange residues form charged (positive) interactions; Green residues form hydropho-
bic interactions; Blue residues form polar interactions.  
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protein, while at the same time also forming hydrogen 
bonds with Ile A:879 and Tyr A:867, and polar coordination 
with Ser A:806 with protein at more than 30% of the simula-
tion trajectory. 

In accordance with this study, the proteins BCL2 and 
P13KCG, which are associated with the suppression of colo-
rectal and small-cell lung malignancies, represent plausible 

promising prospective targets. This discovery might result in 
the development of novel cancer therapeutic targets. 

3. Experimental 

The experiment started by building a protein-UA network to 
determine which protein is the most suitable target of 

Figure 10. The stability results from PI3KCG complex by MD simulations at 100 ns trajectory (a) Protein and Ligand RMSD (Å) with time frame over 100 ns; 
(b)Protein RMSF (Å) plot of protein structural variation from the backbone over the trajectory of 100 ns; (c) Ligand RMSF (Å) plot of 2D ligand structure fluctuation 
with respect to protein over the trajectory of 100 ns; (d) Histogram showing the proportion of protein-ligand ineactions; (e) Protein-ligand contacts; top panel 
shows total contacts throughout the trajectory of 100 ns; the bottom panel shows the corresponding amino acid residue responsible for the number of interaction 
with orange colour scale on left; (f) A schematic of detailed ligand atom interactions that occur more than 30.0% of the simulation with the amino acid residues. 
Purple amino acid residues form charged (negative) interactions with ligands; Orange residues form charged (positive) interactions; Green residues form hydropho-
bic interactions; Blue residues form polar interactions.  
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inhibition for this small molecule. The tools that have been 
utilised are such as SwissTargetPrediction tools to predict the 
protein-UA interactions. Cytoscape 3.6.1 to construct the pro-
tein-protein interaction network. Kyoto Encyclopedia of 
Genes and Genomes for the determination of signalling 
pathways. Then, it is verified by using both molecular dock-
ing and MD simulations to further confirm their ability as an 
inhibitor. All the details steps of the experiment are listed in 
this section. 

3.1. UA–target protein network construction 

Succeeding to network pharmacology-based prediction, 
SwissTargetPrediction tools were also applied to perform a 
combination of similarity measurements based on known 2D 
and 3D chemical structures to predict the corresponding poten-
tial bioactive targets (probability> 0.1, www.swisstargetpredic-
tion.ch) (Gfeller et al., 2014). We downloaded data on 
compound-gene interactions in people and entered the canon-
ical SMILES structure of all chemicals into target gene identifica-
tion algorithms. The obtained ligand-protein interaction data of 
all target proteins were imported into Cytoscape 3.8.2 software 
to construct a ligand-protein interaction network. 

3.2. Construction of protein-protein interaction (PPI) 
network of the predicted genes 

PPI network of the predicted genes was constructed by a 
search tool for the retrieval of interacting genes (STRING) 
database (string-db.org/cgi/input.pl; STRING-DB v11.0) 
(Szklarczyk et al., 2019). The ranking of the target proteins 
based on the degree of interactions in the PPI network was 
identified using the Cytoscape plugin cytoHubba (Chin et al., 
2014). Data for ligand-protein interaction of all targets were 
imported into Cytoscape 3.6.1 software to construct a PPI 
protein interaction network. 

3.3. Kyoto encyclopedia of genes and genomes (KEGG) 
pathway enrichment analyses of the target proteins 

To identify the role of target proteins that interact with the 
active ingredients in gene function and signalling pathways, 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID, david.ncifcrf.gov) v6.8 was employed 
(Huang da et al., 2009). KEGG (Kanehisa et al., 2017) pathways 
for significantly associated target proteins with the predicted 
genes were also identified. The adjusted FDR value �0.05, cal-
culated by applying the Benjamini–Hochberg method 
(Benjamini & Hochberg, 1995), was considered significant. 

3.4. Protein preparation for molecular docking 

Three-dimensional (3D) structures of BCL2, PI3KCA and 
PI3KCG macromolecule together with their respective co- 
crystalise ligands (Pubchem CID:71656179, Pubchem 
CID:124193915 and Puchem CID:53327269) were retrieved 
from the literature (Souers et al., 2013; Cheng et al., 2021; 
Come et al., 2018) and downloaded from the RCSB protein 

data bank (PDB). The PDB ID of the macromolecules are 
4MAN (BCL2), 7K6M (PI3KCA) and 6C1S (PI3KCG) with the 
resolution of 2.07 Å, 2.41 Å and 2.31 Å, respectively. The prep-
aration of protein was done using Chimera 1.5.3 and 
Discovery Studio 3.1. All the hydrogen atoms, missing amino 
acid residues, and loop segments around the macromole-
cules’ active sites were added, followed by double-checking 
that various bond arrangements were in the correct order. In 
addition, all the crystallographic waters were removed from 
the PDB files. 

3.5. Ligand preparation for molecular docking 

The structure of UA was retrieved from PubChem (CID: 
24211) and constructed using ChemDraw to create a two- 
dimensional (2D) structure. The built 2D structure of UA was 
converted to the three-dimensional (3D) format and pre-
pared under the CHARM force field by using Discovery studio 
3.1 for docking analysis. 

3.6. Molecular docking simulations 

The molecular docking simulation was carried out to predict 
the ligand-protein binding interaction by applying the 
CDOCKER algorithm using the Discovery Studio 3.1 software 
for the crystal structure of BCL2, PI3KCA and PI3KCG with UA. 
Discovery Studio 3.1 with the input PDBQT files of protein was 
used to create a protein-specific grid box of � 28.88 Å, 
� 7.02 Å, � 5.96 Å for BCL2, 18.4768 Å, 10.7265 Å, 3.5792 Å for 
PI3KCA and 21.619 Å, 61.0021 Å, 22.6205 Å for PI3KCG around 
the active region, with a circle radius of 36.03 Å, 13.3787 Å and 
13.1228 Å respectively as well as all other parameters were left 
as their default values. The Top Hits parameter was set to 10, 
implying that the top ten conformations of ligand in the pro-
tein were saved based on scoring and ranking by the negative 
value of CDOCKER capacity. 

Finally, the molecular interactions were evaluated as well 
during the docking simulation. Binding energy was calculated 
in -kcal/mol, with the negative value suggesting more signifi-
cant interactions between the ligand and the target. Two- 
dimensional and three-dimensional interaction forms of the 
docked complex were used to observe amino acids present in 
the ligand-protein binding site using Discovery Studio 3.1 
visualiser. 

3.7. Molecular dynamic simulation 

The selected ligand-protein complex will then be subject to all 
long atomic range simulation tests for 100 nanoseconds (ns). 
The whole MD simulation is run by Desmond (Schreodinger 
Maestro-Desmond Interoperability Tools) (Bhowmick et al., 
2020). The "System Builder" module of Desmond was used to 
create the protein-ligand systems and docked complex. For 
optimising each BCL2, PI3KCA and PI3KCG bound ligand com-
plex, the OPLS 2005 (optimal potentials for liquid simulations 
2005) molecular mechanics force field parameters were 
assigned (Bharadwaj et al., 2019). The system was dissolved 
using the TIP3P water model’s transferable intermolecular 
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potential (Huq et al., 2019) and neutralised by changing the 
appropriate number of counterions. The water box system 
was built in a cubic form with a space of 10 Å between the 
water box wall and the protein complex to avoid any overlap-
ping of the system. Desmond’s default settings were used to 
decrease the protein-ligand complex system, with a maximum 
of 1000 iterations steps utilising the steepest descent (SD) and 
limited memory Broyden–Flecher Goldfarb– Shanno (LBFGS) 
algorithms (Bhowmick et al., 2020). A Coulombic cut-off of 9 Å 
was utilised for non-bonded or short-range interactions. At 
the same time, a 10� 8 tolerance was set for electrostatic inter-
actions using the Particle Mesh Ewald (PME) technique (Cerutti 
et al., 2009). Moreover, boundary effects were prevented with 
the use of a periodic boundary condition (PBC) during simula-
tions (Riihim€aki et al., 2006). All systems were considerably 
adjusted before the generation of the MD simulation, with the 
default protocol being used the majority of the time. An all- 
atom MD simulation run was submitted for 100 ns in an equili-
brated system of NPT (N 1=4 number of particles, P 1=4 system 
pressure, T 1=4 temperature) ensemble using the Nose–Hoover 
thermostat (Bhowmick et al., 2020) temperature of 300 K and 
Martyna–Tobias–Klein barostat (Chelli et al., 2007) bar pressure 
of 1.0. Roughly 2000 trajectory frames were collected at every 
50 picoseconds (ps) interval for the simulation events. The 
energy of the simulated system was captured every 1.2 ps 
time. After the MD simulations were completed, the 
"Simulation Interactions Diagram" module (Anand et al., 2015) 
embedded in the Desmond programme was used to retrieve 
simulation-generated information on RMSD, RMSF and protein 
secondary structure elements. The ligand binding free ener-
gies and ligand strain energies can be calculated using 
MMPBSA for a collection of ligands and a single receptor (Riaz 
et al., 2022). Following the binding affinity analysis, the 
MMPBSA was performed using the Desmond Schrodinger 
suite (Ongaro et al., 2021). We have looked at the differences 
between the relative binding free affinities of UA with the 
6C1S, 7K6M and 4MAN proteins. 

4. Conclusion 

In summary, the UA anticancer activities mechanism of action 
was studied through network pharmacology, molecular dock-
ing and molecular dynamic simulation. Using KEGG enrichment 
pathways, the 13 proteins from the PPI analysis that have a sig-
nificant correlation with UA have been narrowed to the three 
proteins that UA is most likely to inhibit: BCL2, PI3KCG, and 
PI3KCA. Among those three proteins, UA displayed a moderate 
binding affinity with PI3KCG and BCL2 while UA was found to 
have a weak binding affinity towards B13KCA as demonstrated 
in molecular docking studies. Despite moderate binding affinity 
shown by UA, the good stability predicted by MD simulation 
suggests that UA had a promising potential for inhibiting 
PI3KCG and BCL2 proteins which are associated with colorectal 
and small-cell lung cancers. Finally, to fully understand the 
potential of UA as an anti-cancer medication candidate, further 
in vivo and in vitro studies should be conducted targeting 
PI3CG and BCL2 proteins. 
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