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Abstract Among the various compounds of natural

origin, usnic acid (UA) is one of the best studied. It has

several pharmacological activities, standing out as an

antimicrobial, antitumor, antiviral, and antiparasitic

agent, and despite these relevant properties, it is a

toxic molecule. In this context, research has driven the

development of innovative alternatives, such as their

encapsulation in controlled release systems, an attrac-

tive tool for pharmaceutical nanotechnology. These

systems allow the active ingredient to be released at

the optimal yield speed and reduce the dosing

regimen. Consequently, they are able to increase

therapeutic efficacy by minimizing side effects. Given

the above, this paper presents a review of the literature

on chemical and biological properties, analytical

methods, mechanism of action and toxicology of

UA, and discusses the use of nanotechnology as a tool

to overcome the obstacles of its pharmacological

application.

Keywords Usnic acid � Chemical and biological
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Introduction

Modern science arises interest in the discovery of new

molecules with attractive pharmacological applica-

tions, whether from natural sources or from chemical

modifications from pre-existing molecules. Given the

vast biodiversity, these bioactive molecules can be

extracted from animals, plants, algae, bacteria and

fungi (Xu et al. 2019). In this context, lichens are

noteworthy, as they are basic living beings resulting

from the symbiosis between fungi and algae and/or

cyanobacteria. They have a wide geographical distri-

bution, from the tropics to the poles, inhabiting the

surface of rocks, soils and tree trunks. The attention
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Cidade Universitária, Recife, PE 50670-901, Brazil

e-mail: nssm@ufpe.br

M. C. B. Lira-Nogueira

e-mail: mariane.lira@ufpe.br

M. S. O. Wanderley

Institute of Biological Sciences (ICB), Pernambuco State

University (UPE), Recife, PE, Brazil

N. P. S. Santos � M. C. B. Lira-Nogueira
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given to these organisms is due to their ability to

produce attractive substances, such as hyphae-synthe-

sized secondary metabolites, which are used as a

defense and weather protection mechanism (Müller

2001). Such metabolites are classified into 3 bioener-

getically related chemical groups: depsides, depsi-

dones and dibenzofurans (Xavier-Filho et al. 2006),

being usnic acid (UA) considered one of the most

important biologically active lichen metabolites

(Müller 2001).

The first reports of obtaining UA date from 1880

from the species Usnea barbata. Interest in the

isolation of this molecule has driven its search in

several lichen species such as Usnea deffractas

(Müller 2001), Lecanora pseudogangalevides (Lumb-

sch 1995), Usnea laevis (Marcano et al. 1999),

Roccella montagnei (Vijayakumar et al. 2000), Sticta

weigelii (Piovano et al. 2000), Cladonia substellata

(De Carvalho et al. 2005) and Usnea longissima

(Odabasoglu et al. 2006). Huneck and Yoshimura

(1996) published a rich and essential handbook, which

contains valuable information about lichens.

According to Ingólfsdóttir et al. (1985), the thera-

peutic interest of UA was aroused after the use of

lichens in folk medicine, since ancient times, in the

fight against pulmonary tuberculosis and some skin

diseases. Later, other significant biological activities

were attributed to it, such as: anti-inflammatory,

analgesic, antipyretic (Yamamoto et al. 1995), anti-

fungal (Broska et al. 1996), antimicrobial (Lauterwein

et al. 1995), antiparasitic (Fournet et al. 1997),

antitumor (Kumar and Müller 1999), antiviral (Cam-

panella et al. 2002), enzymatic inhibition (Huneck

1999) and gastroprotective (Odabasoglu et al. 2006).

Despite being an old molecule, used since the

1950s, (Bustinza 1952), the UA still arises great

scientific interest, a fact confirmed by the progressive

growth in the number of publications in the past years,

as observed in Fig. 1, and until June 2020, 29 articles

are already published.

Despite the growing interest in this lichenoid

derivative, it is known that UA has significant toxic

effects, mainly severe hepatotoxicity (Liu et al. 2012;

Piska et al. 2018), but also allergic (Sheu et al. 2006;

Pacheco et al. 2012) and teratogenic effects (Silva

et al. 2017).

Our research group has expertise with relevant

scientific production related to this lichen derivative

and the UA encapsulation in nanosystems. In this

sense, this paper aimed to present a literature review

on this subject, emphasizing the chemical properties,

analytical methods, biological properties and toxico-

logical aspects. In addition, for the first time, the use of

nanotechnology as a tool to optimize the biological

properties of UA will be addressed, overcoming the

obstacles of its pharmacological application.

Fig. 1 Number of publications over the years, related to the keyword ‘‘usnic acid’’, based on a survey by the Scopus International

Scientific Research Bank (www.scopus.com)
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Chemical properties of usnic acid

Usnic acid [UA = 2,6-diacetyl-7,9-dihydroxy-8-9b-

dimethyl-1,3 (2H, 9b/aH) -dibenzofurandione;

C18H16O7, PM = 344.32] (Fig. 2c), is characterized

by being a yellow-pigmented substance (Fig. 2a),

occurring in two enantiomeric natural forms, (-) and

(?), due to the angular projection of the methyl group

located at position 9b (Cocchietto et al. 2002;

Ingólfsdóttir 2002).

Both UA enantiomers present biological properties,

but as reported by Galanty et al. (2019), the predom-

inance of any of the enantiomers is still an open

question.

This lichen derivative has a hydrophobic character,

with water solubility of less than 10 mg/100 mL at

25 �C (Ingólfsdóttir 2002), being partially soluble in

ethanol and easily without hot ether, acetone, benzene,

and chloroform. This hydrophobic feature can be

explained by the presence of the three-ketone groups,

as well as the furan ring that joins the aromatic rings,

as well as intramolecular hydrogen bridges (Müller

2001). Its acidity is justified by the presence of the

phenolic ring, whose structure is unstable (Shibata

2000). The pKa value for the phenolic hydroxyl group

at position 3 is 4.4, caused by the inductive effect of

the ketone group at position 1. On the other hand, for

the phenolic hydroxyl group at position 9, pKa is 8.8

due to the inductive effect caused by the para-acetyl

group located at position 6. For the hydroxyl group

located at position 7, pKa is 10.7, probably due to the

intramolecular interaction through hydrogen bridges

with the acetyl group at position 6 (Sharma and Jannke

1966; Kristmundsdóttir et al. 2002; Han et al. 2004).

Recently, Antonenko et al. (2019) showed that

hydroxyls confer protonophoric properties to the UA

molecule, so this lichen derivative forms UA-Ca-UA

dimers with Ca2? ion, and when complexed with

Ca2?, it promotes a dose-dependent response in the

induction of electric current through the lipid bilayer.

The author also observed that each hydroxyl is

important for such a phenomenon, since the removal

of any one of them leads to the reduction of the electric

current induction.

According to the literature, UA biosynthesis pro-

ceeds via the polymalonate acetate pathway (Fig. 3).

Initially, through aromatic synthetases, monocyclic

phenolic units, which do not have dehydrogenated

subunits, are formed, being originated from carboxylic

acids derived from acetic acid, i.e. from acetyl-CoA

Fig. 2 Macroscopic aspect (a), microscopic aspect (optical microscopy 20 9), and chemical structure of usnic acid (c)

Fig. 3 Usnic acid biosynthesis pathway
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and malonyl-CoA. The synthesis of methyl-fluoro-

acetophenone (C1), a key intermediate for the forma-

tion of usnic acid, is catalyzed by the enzyme

polyketidase synthase (Hawranik et al. 2009). Subse-

quent steps of its biosynthesis involve the stereospeci-

fic homologous coupling of two units of methyl-

fluoro-acetophenone, thus yielding hydrated UA.

Finally, dehydration of the molecule occurs, leading

to the formation of the ether bond (Ingólfsdóttir 2002).

To date, key methods for obtaining UA consist of

lichen extractions using organic solvents and subse-

quent precipitation, usually using ethanol (Sokolov

et al. 2012a).

In addition to the biosynthesis, the characterization

of UA is widely described in the literature. Scientific

documents describe analyzes using infrared (IR)

spectrophotometry, proton nuclear magnetic reso-

nance (H1 NMR), thermal analysis, among other

techniques. Characterization of the molecule by

infrared spectrophotometry shows cyclic ketone

grouping (1694 cm-1), weak bands at 1716 and

1676 cm-1 referring to noncyclic ketone groupings n

(C=O) and symmetrical and asymmetric aryl, alkyl

bands ether (COC) close to 1288 and 1070 cm-1,

respectively (Lira et al. 2009a; Edwards et al. 2003). In

this respect, the characterization of UA by proton

nuclear magnetic resonance (H1 NMR) confirmed

characteristic peaks of the molecule such as hydroxyls

at 13.406 and 11.396 ppm, aromatic ring proton at

6.25 ppm, and methyl group protons at 2.61, 2.04 and

2.50 ppm at positions 14, 15 and 16, respectively (Lira

et al. 2009a). Thermal analysis performed by different

researchers describe endothermic peak ranging from

200 to 204 �C, corresponding to the peak of fusion of

UA, and exothermic peak around 273 �C, correspond-

ing to the beginning of its degradation temperature

(Marcano et al. 1999; Lira et al. 2009a).

From a well-characterized molecule, it is possible

to make chemical modifications in order to provide an

improvement in its characteristics, such as biological

activities. Several studies report strategies for obtain-

ing derivatives of UA to potentiate their water

solubility as well as its biological activity and

minimize its toxic effects, more specifically hepato-

toxicity. Changes of UA generally comprise reactions

with amine in the carbonyl group and ester formation

in hydroxyl groups (Sokolov et al. 2012a). The

modification described initially aimed at obtaining

the UA salt, with the purpose of finding a water-

soluble form, but without losing its biological activity.

Na-UA salt was the sodium salt named BINAN, whose

antimicrobial activity was like the original molecule

(Najdenova et al. 2001).

Following another path, but still aiming to increase

the aqueous solubility of UA, Kristmundsdóttir et al.

(2002) tested different pH ranges, various co-solvent

concentrations, surfactants, and complexing agents

such as 2-hydroxypropyl-b- cyclodextrin. The authors

observed that the solubility of UA with 2-hydrox-

ypropyl-b-cyclodextrin was 0.68 mg/100 mL. Later,

Lira et al. (2009b) developed and characterized

inclusion complexes of UA and b-cyclodextrin, using

the lyophilization method for this purpose. Chemical

interactions between UA and b-cyclodextrin were

evaluated by IR, H1 NMR, X-ray, and thermal

analysis. Following the same idea of complexation

and the same characterization methods, Nikolic et al.

(2013) described the production of UA-inclusion

complexes with hydroxypropyl-b-cyclodextrin.

Still aiming to increase the solubility of UA, Lukác

et al. (2012) investigated the influence of bisammo-

nium salt (representing a cationic surfactant),

dialkylphosphocholine (representing a zwitterionic

surfactant) and the mixture of both to increase the

solubility of acid in micellar solution. The authors

observed that higher solubility was observed for

cationic surfactant (20 times) when compared to acid

solubility in water.

In addition to chemical modifications to increase

aqueous solubility, they are also purposed to potentiate

the biological activity of UA. Luzina et al. (2007), for

example, investigated condensation of UA with var-

ious amino acids such as glycine, b-alanine, L-valine,

and L-leucine among others biologically active

molecules, to increase their activities. Bazin et al.

(2008) also described the synthesis of nine UA-

conjugated amino derivatives and evaluated their

cytotoxic activity in human and murine cancer cell

lines. Sometimes, chemical modifications exhibit

greater biological action but they do not yet exhibit

synergistic behavior capable of reducing toxic effects.

To overcome these disadvantages, an innovative

strategy is undoubtedly the encapsulation of UA in

controlled drug delivery systems, which will be

pioneered described later in this paper.

Despite many studies focusing on physicochemical

characterization, many different analytical methods

have been reported, describing the identification,
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separation, and quantification of UA in lichen extracts

(Cansaran et al. 2006; Ivanovic et al. 2013), in plasma

(Venkataramana and Krishna 1992) and in pharma-

ceutical preparations (Ribeiro-Costa et al. 2004;

Santos et al. 2005; Siqueira-Moura et al. 2008).

Among these, spectrophotometry (Siqueira-Moura

et al. 2008), fluorimetry, high-performance liquid

chromatography (HPLC) (Venkataramana and

Krishna 1992; Ribeiro-Costa et al. 2004; Santos

et al. 2005; Ji and Khan 2005), thin layer-chromatog-

raphy (TLC) (Marcano et al. 1999), zone capillary

electrophoresis (CZE) (Kreft and Strukelj 2001), ultra-

performance liquid chromatography coupled with

electrospray mass spectrometry (UPLC–ESI(-)-MS),

as well as matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (MALDI-TOF MS)

(Santos et al. 2015), are described.

Some chromatographic models have been vali-

dated, such as the one initially described by

Venkataramana and Krisnha (1992), who developed

a method using HPLC for determination of UA in

human plasma, achieving 98% analyte recovery. The

authors used a UV detector (wavelength 280 nm), C18

column, and a mobile phase consisting of methanol—

phosphate buffer (pH 7.4) (70:30, v/v). Under other

conditions, Ji and Khan (2005) used chromatographic

method, with a photodiode array detector (PDA) at

233 nm, to measure the lichen compound in plant

materials and market products. The mobile phase was

composed of aqueous 0.1% acetic acid and acetonitrile

and RP18 column.

In contrast, the capillary zone electrophoresis

(CZE) method was developed for the UA-routine

analysis in medicinal products containing lichen

extract (Kreft and Strukelj 2001). Despite several

previously described analytical protocols, only in

2009, Siqueira-Moura et al. proposed and validated a

simple ultraviolet (233-290 nm) spectrophotometric

method for dosing UA from nanosystems (liposomes)

without interference of the formulation.

Biological properties of usnic acid

Although several therapeutic properties have been

attributed to usnic acid, since its discovery, most

publications refer to its antimicrobial potential and

innovate by reporting its action spectrum against

increasingly new strains, especially those resistant to

traditional antibiotics. At the same time, a progressive

increase in publications related to the antitumor

property of this lichen derivative has been described,

awakening its application against the most different

cancer strains. Thus, we will initially describe the

antimicrobial and antitumor activities of UA, followed

by other biological activities.

Antimicrobial and antiparasitic activities

Antifungal activity

The antifungal activity of UA was also discovered in

the 1950s, when inhibition of the fungus Trichophyton

mentagrophytes was observed after treatment with it

(Bustinza 1952). After that, the small number of drugs

available for fungal treatments encouraged the search

for new chemotherapy agents, so that more studies

with UA have been carried out, against different fungi

(mold or yeasts). In (1996), for instance, Broska et al.

observed growth inhibition of Penicillium fraquentans

and Verticillium albo-atrum following treatment with

UA. However, no action of UA against the biofilm

formed by the yeasts Candida orthopsilosis and C.

parapsilosis was observed by Pires et al. (2011).

Yu et al. (2016) evaluated the activity of 8 lichen

derivatives, including UA, against clinical isolates of

the yeast Candida albicans and the molds Trichophy-

ton mentagrophytes, T. rubrum, Aspergillus fumigatus

and A. flavus, and only derivatives 7 and 8 designated

as usone (whose molecular formula was C20H22O) and

isousone (an isomer of 7), respectively showed

activity against T. rubrum, both with a MIC (minimum

inhibitory concentration) of 41 lM, while the other

compounds presented MIC above of 200 lM. On the

other hand, the antifungal activity of UA (2-32 mg/L)

and acetone extracts of three fruticose lichens namely,

Cladonia amaurocraea, C. rangiferina and U. longis-

sima were investigated against three pathogenic

oomycete fungi, which can cause serious fish sapro-

legniasis: Saprolegnia parasitica, Achlya bisexualis

and Pythium sp. (Guo et al. 2017). According to the

authors, the MIC of UA for the tested fungi S.

parasitica and A. bisexualis was 2 mg/L and for

Pythium sp. it was 8 mg/L. UA absolutely inhibited

the mycelial growth of S. parasitica at 32 mg/L and

had better effect than the fungicide nikkomycin Z (ca.

100 mg/L for total inhibition). Mycelial growth of A.

bisexualis and Pythium sp. were totally inhibited by
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16 mg/L of UA, and at 2 and 4 mg/L, UA showed

growth promoting activities for Pythium sp. Among all

three oomycetes fungi, the S. parasitica growth was

inhibited above 50% at concentrations of UA higher

than 4 mg/L. Regarding to the three lichen extracts,

concentrations higher than 200 mg/L inhibited above

50% of the S. parasitica growth, while the growth of

the other fungi were inhibited with at least 1600 mg/L

of any of the extracts.

Recently, Kumar et al. (2019), using candidiasis

and dermatophytosis models, evidenced the antifungal

activity of blended cinnamon oil and UA

nanoemulsion.

Antibacterial activity

The discovery of UA occurred through the search for

new antibiotic compounds (Abrahan and Florey 1949;

Bustinza 1952), having their first descriptions against

Streptococcus mutans (etiological agent of dental

caries and other periodontal diseases) and the genera

Escherichia, Salmonella, and Shigella (Lauterwein

et al. 1995).

Additionally, UA has been used as an alternative

against recommended antibiotic resistant strains such

as vancomycin resistant Enterococci (VRE) and

methicillin resistant Staphylococcus aureus (MRSA)

(Elo et al. 2007). Still about the activity of UA on such

strains, Pompilio et al. (2013), identified its antibiofilm

action. In parallel, in order to overcome the resistance

of MRSA, Segatore et al. (2012), evaluated the UA

combined with other antibiotics, finding its synergistic

action with gentamicin, and antagonistic action with

levofloxacin, and an indifferent action with clin-

damycin, erythromycin, gentamycin, levofloxacin,

and oxacillin.

Antonenko et al. (2019) found that the hydroxyls

present in the UA are intricately linked to its activity

against the growth of Bacillus subtilis. In addition to

UA, three analogs without protons at positions 3, 7 and

9, were tested, being the original UA more effective

against B. subtilis than its three analogs. So that, the

replacement of hydroxyl groups by methoxyl groups

reduced the UA-antimicrobial activity.

Still exploring the use of UA to control the growth

of Streptococcus aureus and Pseudomonas aeruginosa

biofilms, in despite it does not inhibit the initial

fixation of S. aureus on artificial polymer surfaces

(in situ), it was able to kill cells after adherence,

thereby inhibiting biofilm growth. In the case of P.

aeruginosa, although biofilm formation also occurred,

changes in the morphology of the bacteria were

observed affecting its aggressiveness (Francoline et al.

2004). This was an important finding, as it has become

common in medicine to use artificial devices to repair

or replace damaged body parts, which can serve to

deposit bacteria and fungi, thus resulting in the

formation of biofilms.

Resistance to antibiotic therapy is one of the main

problems in the fight against tuberculosis. Therefore,

UA was tested against strains susceptible and resistant

to isoniazid, streptomycin, and rifampicin - drugs used

in current therapy, showing that there was no cross-

resistance. This fact suggested that the mechanism of

action of usnic acid is different from the drugs

currently used in tuberculosis therapy (Ramos and

Da Silva 2010). Also, Honda et al. (2010) tested the

action of 26 lichen derivatives against Mycobacterium

tuberculosis (H37Rv), and found that UA was the third

most effective metabolite, with a minimum inhibitory

concentration (MIC) of 62.5 lg/ml (182 mM), which

also evidenced the activity of UA against M.

tuberculosis.

In addition to the strains listed above, Helicobacter

pylori was also found susceptible to UA, being this

activity dose dependent (Safak et al. 2009). The

authors first noted that a specific lichen (Usnea

dasypoga) was popularly used for the treatment of

gastric ulcer, and then, tested the UA and its combi-

nation with well know antibiotics against H. pylori. It

was shown an effective synergism of UA and

clarithromycin – this antibiotic, in combination with

inhibitors of acid secretion, is a reference drug in the

treatment for the eradication of H. pylori. In a later

study, Luo et al. (2011) evidenced this anti-H. pylori

activity of UA extracted from Nephromopsis palles-

cens and obtained results comparable to those of the

control treatment, ampicillin, and erythromycin.

The mechanism used by H. pylori to colonize the

gastric mucosa involves the production of extracellu-

lar urease, which promotes the increase of the pH in

the stomach due to the production of ammonia from

urea. Lage et al. (2018), tested the activity of lichen

derivatives, including UA, omeprazole (OMP, refer-

ence drug), hydroxyurea (HU) and thiourea (TU)

(urease inhibitors) against six H. pylori clinical

isolates, showing that (R)-(?)-UA presented a MIC

of 3.8-7.8 times lower than the OMP, and 74-286 times
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lower than the MIC of HU or TU. The authors also

tested the (S)-(-)-UA, and the results showed that in its

S-(-) form, UA had a MIC 2-4 times lower than the

MIC of the OMP, 25-99 times lower than the MIC of

HU and 39-154 times lower than the MIC of TU.

Given the above information, we summarize in

Table 1 some bacterial strains susceptible to UA,

evidencing its widespread application against differ-

ent bacteria.

Antiviral activity

Initially, UA was tested against Epstein–Barr, Human

Papillomavirus (HPV), and Rat Polyomavirus (Ya-

mamoto et al. 1995; Scirpa et al. 1999; Campanella

et al. 2002). In (1995), Yamamoto et al. tested both

enantiomeric forms of UA against Epstein–Barr virus

and found that the dextrorotatory form had higher

antiviral activity than its levogyre enantiomer. Action

against HPV has been observed in the adjuvant

treatment of infection associated with zinc sulfate

(Scirpa et al. 1999). In this study, it was demonstrated

that besides antiviral action, UA favored the reepithe-

lization of the injured tissue. Thus, it enabled adjuvant

therapy in the unobstructed surgical treatment and in

the HPV injury.

In addition, UA was able to inhibit the proliferation

of rat polyomavirus, a fact that occurred by the

destruction of viral DNA through inhibition of RNA

transcription (Campanella et al. 2002). The activity of

UA and its derivatives (synthetically modified) was

also evaluated against H1N1 influenza viruses in

MDCK cells, and the results suggested that these

molecules are anti-influenza substances (Sokolov et al.

2012b). Shtro et al. (2015) demonstrate the antiviral

activity of some UA synthetic derivatives against

influenza virus in vitro (evaluated by their ability to

decrease the virus titer on Madin–Darby Canine

Kidney cells) and in vivo (evaluated by decrease of

mice mortality and index of protection). One com-

pound, valine enamine-UA, significantly reduced

lethality of infected animals and did not give rise to

the appearance of resistant strains. Additional studies

showed that hepatotoxicity of this compound was

reduced comparatively to the natural UA, evidencing

that it could be a potential candidate for the develop-

ment of a new anti-influenza therapy.

Antiparasitic activity

Another activity attributed to UA is its antiparasitic

property. The first report focusing on this field was

described by Wu et al. (1995), when they detected the

(in vitro) activity of UA against Trichomonas vagi-

nalis. Then, (?)-UA isolated from Chilean lichen

Protousnea malacea was tested against the promastig-

ote form of three strains Leishmania braziliensis, L.

amazonenses and L. donovani. In this study, UA

Table 1 Strains of usnic

acid susceptible bacteria,

according to search in the

international scientific

database Scopus (www.

scopus.com)

*ND non-determined

Bacteria MIC of usnic acid (lg/mL) References

(?)-Usnic acid (-)-Usnic acid

Enterococcus faecalis 4 8 Lauterwein et al. (1995)

Enterococcus faecium 16 16 Lauterwein et al. (1995)

Clostridium perfringens 4 4 Lauterwein et al. (1995)

Bacteroides vulgatus 4 8 Lauterwein et al. (1995)

Pseudomonas aeruginosa 256 ND(*) Francoline et al. (2004)

Staphylococcus aureus 6 8 Correché et al. (1998)

8 8 Lauterwein et al. (1995)

32 ND(*) Francoline et al. (2004)

2 ND(*) Segatore et al. (2012)

2 ND(*) Pompilio et al. (2013)

Mycobacterium aurum 32 ND(*) Ingólfsdóttir et al. (1998)

Mycobacterium tuberculosis 1.56 ND(*) Ramos and Da Silva (2010)

Helicobacter pylori 0.064 ND(*) Safak et al. (2009)

0.012 0.023 Lage et al. (2018)
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(25 ml/mL) promoted total lysis of the three strains in

the in vitro assays, besides showing a significant

reduction of the skin lesion in BALB/c mice infected

by L. amazonenses, demonstrating its interesting

antiparasitic activity (Fournet et al. 1997). The

leishmanicidal activity of UA has recently been

proven by Derici et al. (2018) against the species

Leishmania major, L. infantum, and L. tropica in their

promastigote forms. The IC50 of UA was respectively

10.76 lg/mL, 13.34 lg/mL, and 21.06 lg/mL. The

authors evaluated the apoptotic mechanism of Leish-

mania caused by UA and concluded that it promoted

increase of gene expression of p53, Bax, Casp-3, and

Casp-9, thereby reducing cell proliferation of pro-

mastigote forms.

Sussmann et al. (2011) stimulated by parasitic

resistance to conventional drugs, tested UA against

Plasmodium falciparum, and found that it has an

important action against the parasite as it reversibly

inhibited the biosynthesis of vitamin E, an important

molecule for parasite development. The in vitro

activity of UA-potassium salt against Schistosoma

mansoni was studied by Araújo et al. (2019), who

performed an ultrastructural analysis and suggested

that UA-potassium salt could be used for the devel-

opment of new schistosomicidal agent (Araújo et al.

2020).

Antitumoral activity

Almost four decades ago, the UA-antitumor activity

was described for the first in Lewis lung carcinoma

(Kupchan and Kopperman 1975). From then on,

in vitro studies have shown this action against

different cell lines, such as human keratinocytes

(HaCaT) (Kumar and Müller 1999; Pereira et al.

1994; Lima et al. 1990; Burlando et al. 2009), cancer

cells breast (MCF7 and MDA-MB 231) and lung

cancer (H1299 and NCIH 292) (Mayer et al. 2005;

Santos et al. 2005). When incorporated into b-

cyclodextrin, it has demonstrated its antiproliferative

activity against malignant cells of the K-562 (leuke-

mia) lineage (Campanella et al. 2002), T-47-D (breast

cancer), Panc1 (pancreatic cancer) and PC-3 (prostate

cancer) (Kristmundsdóttir et al. 2005). The UA-

antiproliferative activity was observed against model

lineage to study the effects of human cancer cytotoxic

compounds, vulvar squamous cell carcinoma (A431),

and against an aggressive and lethal chemotherapy

resistant tumor lineage (malignant mesothelioma

(MM98) (Burlando et al. 2009).

The in vitro cell viability of human hepatoblastoma

HepG2 has been shown to be compromised with 5 lM

concentrations of UA and has a LC50 of 30 lM. In the

same study, the exposure of these cells to the drug,

especially at concentrations above 20 lM, resulted in

a significant increase in cytochrome P450 activity,

oxidative stress and mitochondrial dysfunction prov-

ing the toxicity of UA against these cell lines (Sahu

et al. 2011). In (2012), the same researchers, when

associating UA with a lipopolysaccharide, observed

an increase in toxic effect against HepG2 (Sahu et al.

2011).

In addition, several authors compared the properties

of UA with the ones of others lichen derivatives. When

it was compared with parietin, atranorin, and gyro-

phoric acid, UA was found to have a higher antitumor

potential against A2780 and HT-29 cancer strains

(Backorová et al. 2012). In the work proposed by

Brisdelli et al. (2013), UA was the most potent

cytotoxic agent for MCF-7, HeLa, and HCT-116

strains when compared with diffractaic acid, lobaric

acid, vicanicin, variolaric acid, and protolichesterinic

acid. Corroborating the antitumor activity of UA,

Brandão et al. (2013) found that it showed cytotoxicity

to the UACC-62 melanoma cell line. The anticancer

effects of both enantiomeric forms of UA were

investigated by Einarsdóttir et al. (2010), who con-

cluded that both forms had an inhibitory effect on cell

growth and proliferation of cancerous T-47D (breast

cancer) and Capan-2 (pancreas cancer).

Finally, O’Neill et al. (2010), knowing the impor-

tant role in both cell division and apoptosis cell death

mechanisms, investigated whether UA affected the

formation and/or stabilization of microtubules as a

chemotherapeutic target, but such activity has not

been found. Table 2 summarizes some carcinogenic

cell lines that showed susceptibility to UA, confirming

the high number of citations as an antitumor agent.

Other activities

Given all these reports about antimicrobial and

antitumor properties, several authors have attributed

other biological activities to usnic acid, as explained

below.
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Gastroprotective activity

Usnic acid isolated from Usnea longissima has been

tested in the treatment of indomethacin-induced

gastric ulcer in animals. Gastric lesions were reduced

at the tested doses (25, 50, 100, and 200 mg/kg body

weight), as compared to the reference drug ranitidine

(25 mg/kg body weight). This gastroprotective action

of usnic acid can be attributed to its reducing effect

against oxidative damage and its inhibitory effect on

neutrophil infiltration in rat stomach (Odabasoglu

et al. 2006), in addition to its ability to inhibit urease,

an enzyme synthesized by the bacterium H. pylori,

which is responsible for the production of ammonia

from urea.

Healing, anti-inflammatory and antioxidant activities

The wounded skin generally leads to an increased fluid

loss, infection, hypothermia, scarring, compromised

immunity, and change in body image, as well as large

skin damage can cause mortality (Alemdaroǧlu et al.

2006). The wound healing is a process that deserves

attention, especially post-surgery and burns. It

involves extensive oxidative stress and defense against

microbial attack (Francolino et al. 2019a), and the first

generally inhibits connective tissue remodeling. Col-

lagen is the major constituent of the connective tissue,

and collagen-based film is a potentially useful healing

biomaterial that permit controls drug release within

target tissues (Gopinath et al. 2004).

In order of the epithelial regeneration to be

adequate, a pharmacological therapy that makes the

microbial action unfeasible, and simultaneously pro-

motes re-epithelialization, is necessary. Thus, UA has

been used in dermatological and cosmetic prepara-

tions, such as encapsulated in liposomes, due to its

antioxidant and bacteriostatic activities (Francolino

et al. 2019b).

Nunes et al. (2011) assessed the effect of collagen-

based films containing usnic acid as a wound dressing

for dermal burn healing. For that, the second-degree

burn wounds were performed in 45 Wistar rats

assigned into nine groups, it means, three for treated

only with reconstituted bovine type-I collagen-based

films (COL), three for treated with collagen films

containing empty liposomes (COL-LIPO), and three

for the treated with collagen-based films containing

COL-UA-LIPO. After 7, 14, and 21 days, the animals

were euthanized. The authors found that on the 7th

day, the group COL-UA-LIPO presented a moderate

infiltration of neutrophils distributed throughout the

burn wounds, whereas in the groups COL or COL-

LIPO, the severity of the reaction was slighter and still

limited to the margins of the burn wounds. On the 14th

day, the inflammatory reaction was less intense in

tissues treated with COL-UA-LIPO, with remarkable

plasma cells infiltration, and on the 21st day, there was

Table 2 Usnic acid

susceptible cancer cell

lines, according to search in

the international scientific

database Scopus (www.

scopus.com)

*IC50/**EC50/***LC50; ND
non determined, VC violet

crystal; NR neutral red

Cell line Usnic acid References

(?) (-)

Epidermoid carcinoma (A431) **39 lM(VC)

**72 lM(NR)

(ND) Burlando et al. (2009)

Malignant mesothelioma (MM98) **23 lM(VC)

**64 lM(NR)

(ND) Burlando et al. (2009)

Human keratinocytes (HaCaT *2.1 lM (ND) Kumar and Müller (1999)

**35 lM(VC)

**76 lM(NR)

(ND) Burlando et al. (2009)

Breast cancer (T-47D) *12.1 lM *11.6 lM Einarsdóttir et al. (2010)

Pancreatic cancer (Capan-2) *15.3 lM *14.5 lM Einarsdóttir et al. (2010)

Human hepatoblastoma (HepG2) ***30 lM (ND) Sahu et al. (2011)

Cervix adenocarcinoma (HeLa) *23.7 lM (ND) Brisdelli et al. (2013)

Colon carcinoma (HCT-116) *17.7 lM (ND) Brisdelli et al. (2013)

Breast adenocarcinoma (MCF-7) *75.7 lM (ND) Brisdelli et al. (2013)

Human melanoma (UACC-62) ***534.4 lM (ND) Brandão et al. (2013)
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reduction of the inflammation (predominantly com-

posed by plasma cells in all groups, mainly in the

tissues treated with COL-UA-LIPO). On the 14th day,

it was seen that the use of COL-UA-LIPO provided a

more rapid replacement of type-III collagen for type-I,

while by the 21st day, the collagenization density had

been improved, allowing to conclude that the use of

collagen-based films containing UA improved burn

healing process in rats.

Bruno et al. (2013), using in vitro and in vivo

assays, also evaluated the wound repair property of

usnic acid derivatives. Less cytotoxicity to skin cells

was observed, as well as better healing performance,

suggesting the possibility of using these compounds in

wound healing and anti-aging skin preparations.

Furthermore, the healing action of UA is favored by

its anti-inflammatory potential. Huang et al. (2011)

noted that such property is a consequence of down-

regulation of some inflammation mediators such as

iNOS (induced-nitric oxide synthase), COX-2 (cy-

cleoxigenase-2), IL-1b (interleukin-1b), IL-6, and

TNF-a (Tumor Necrosis Factor-a), and, in addition

to overexpression of IL-10 and hemeoxygenase-1.

Previously, Kohlhardt-Floehr et al. (2010), showed

that UA obtained from Xanthoparmelia farinosa

showed potent antioxidant and pro-oxidant activity

(bifunctional behavior) in human lymphocyte cell

lines (Jurkat-cells: E 6-1 acute leukemia) under

ultraviolet B (UV-B) irradiation.

It had been also observed before that some lichens,

when stimulated by UV light, synthesize metabolites

with strong absorption in this spectrum region, gen-

erating their own protection against hazardous radia-

tion. According to Rancan et al. (2002), UA has

showed a UV protection factor in vivo similar to the

synthetic commercial substance used as a reference

protector (3.6–5.0), and in vitro a UV protection factor

(4.03-4.83) higher than the reference substance (2.66-

3.63). This finding together the other known properties

of UA, converted it in a potential sunscreen and active

compound in different dermatological and cosmetic

preparations, since its ability to absorb UV light, plus

its antioxidant, anti-inflammatory and healing activi-

ties help to protects the skin against the damaging

effects of exposure to sunlight or other agents capable

of causing injury to the skin.

On the other hand, the UA-antioxidant property is

described in other situations. Free radicals are impor-

tant in the development of atherosclerosis, becoming a

risk factor to cardiovascular diseases, so that, the UA-

antioxidant property reflected in cardiovascular pro-

tection in several trials using this compound extracted

from Usnea complanata (Behera et al. 2012).

Rabelo et al. (2012) has performed in silico

evaluation of UA interactions with genes/proteins

and important biomolecules for cellular redox balance

and NO pathway, assessing the UA redox properties

against different reactive species (RS) generated

in vitro. The authors also evaluated the action of this

compound on SH-SY5Y neuronal like cells upon

hydrogen peroxide (H2O2) and found that the total

reactive antioxidant potential index (TRAP), a method

utilized to estimate the non-enzymatic antioxidant

capacity of samples in vitro, based on the quenching of

luminol-enhanced chemiluminescence, showed a sig-

nificant UA-antioxidant capacity at the highest tested

concentration, being also effective against hydroxyl

radicals and decreasing the NO-formation.

Fernández-Moriano et al. (2017) also evaluated the

protective effects of UA against redox impairment

(cytotoxicity induced by exogenous H2O2) in two

models of central nervous system-like cells (U373-

MG and SH-SY5Y cell lines). For this, the authors first

assessed the radical scavenging activity and the

phenolic content (UA) in extracts of the lichen U.

ghattensis. At the optimal concentrations, pretreat-

ments with UA displayed moderate protection against

H2O2-induced cytotoxic damage in both models,

reversing the alterations in oxidative stress markers

(including ROS production, glutathione system, and

levels of lipid peroxidation), and cell apoptosis

(caspase-3 activity). Such effects were in part medi-

ated by a notable enhancement of the expression of

intracellular phase-II antioxidant enzymes; a plausible

involvement of the Nrf2 (nuclear factor erythroid-

related factor 2) cytoprotective pathway is suggested,

as well as the UA deserve further research as a

promising antioxidant candidate in the therapy of

oxidative stress-related diseases, including the neu-

rodegenerative disorders.

Toxicity of usnic acid and mechanism of action

The scientific community has been endeavored to

unravel the biochemical and molecular mechanisms

involved in both the biological activities inherent of
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UA, as well as in its toxicity, and both are not fully

understood yet.

Toxicity of usnic acid to animals

Despite the attractive pharmacological properties of

UA, its toxicity has been studied in different assays

in vitro (Pramyothin et al. 2004), in vivo (Chitturi and

Farrel 2008), and in human patients (Sanchez et al.

2006; Chitturi and Farrel 2008; Foti et al. 2008).

Prokopiev et al. (2017) investigated the genotoxic

effect of both UA-enantiomers on human peripheral-

blood lymphocytes, and found that, at the highest

concentrations tested, of 0.15 and 0.30 mM, the effect

of (-)-UA was twice as great as that of its (?)

enantiomer.

Two years later, the same group observed DNA

damage, but there were no significant differences

between the genotoxic activities of both UA-isomers

in the liver and in the renal cells of rats after oral

administration of 100 and 50 mg/kg (Prokopiev et al.

(2019). Thus, the scientific literature has shown

differences between the biological properties of UA

enantiomers, and recently, Galanty et al. (2019)

published an excellent general review of these studies,

comparing the activity of the two enantiomeric forms.

However, in the literature reviewed by these authors or

in other works, there is still no definition of which

enantiomer is more effective. Depending on the

biological activity, one or the other enantiomeric form

may present better activity and less side effect.

The hepatotoxicity is the most highlighted toxic

effect being handled in literature reviews (Guo et al.

2008; Araujo et al. 2015). The results of the studies of

Pramyothin et al. (2004) revealed that (?)-UA could

present hepatotoxicity like that of carbon tetrachloride

(CCl4). The authors treated rat primary hepatocytes

with 100 or 1000 lM of UA and after 1 h observed a

release of hepatic transaminases (AST and ALT).

Considering the in vivo data on toxicity, Abo-Khatwa

et al. (2015) found that an average dose of 180 mg/kg

was lethal for rats that received the (?)-enantiomer of

UA. These authors also observed that 2–5 h after the

treatment, the symptoms were long chalasia, ponopal-

mosis or spastic paralysis. Other symptoms such as

lethargy, anorexia and abdominal discomfort have

been described in domestic sheep, by Dailey et al.

(2008), after the administration of (?)-UA, with a

toxic dose of 485–647 mg/kg/day, for 7 days.

It is worth mentioning that, in humans, UA

hepatotoxicity has been the subject of several reports,

causing everything from acute hepatitis to liver failure

(Neff et al. 2004; Bunchorntavakul and Reddy 2013).

In previous years, hepatocellular damage was reported

when individuals who consumed a multi-ingredient

supplement called LipoKinetix� experienced acute

liver failure. Its composition, in each capsule, was: UA

(100 mg) norephedrine hydrochloride (25 mg), 3,5-

diiodothyronine (100 lg), yohimbine hydrochloride

(3 mg), and caffeine (100 mg) (Neff et al. 2004).

Another relevant study associated with human

hepatotoxicity was carried out by Durazo et al.

(2004). The authors described an acute liver failure

after 2 weeks of UA administration in a dosage of

500 mg/day. Sanchez et al. (2006) also described that

two healthy patients developed severe hepatotoxicity,

one of them evolved to fulminant hepatic failure

(requiring liver transplantation), while consumed 3

times a day, in cycles of 2 weeks, 3 capsules of UCP-1

(BDC Nutrition, Richmond, Ky)—a dietary supple-

ment that contains per capsule: UA (150 mg), L-

carnitine (525 mg) and calcium pyruvate (1050 mg).

In addition to several reports mentioning UA-

induced liver damage, in vitro assays have shown its

neurotoxicity dose-dependent. According to Rabelo

et al. (2012), in vitro, at highest concentration of

20 lg/mL for 1 ad 4 h, UA enhanced lipoperoxidation

and changed the cellular viability (on SH-SY5Y

neuronal like cells), as well as treatment with 2 lg/

mL and 20 lg/mL for 24 h, according to MTT (3-(4,5-

dimethyl)-2,5-diphenyl tetrazolium bromide) reduc-

tion assay. Moreover, the authors found that UA did

not display protective effects against H2O2-induced

cell death in any case. Evaluation of intracellular

reactive species (RS) production by the DCFH-DA

(20,70-dichlorohydrofluorescein diacetate) based assay

indicated that the UA was able to induce changes in

basal RS production at concentration of 20 lg/mL for

1 h and from 2 ng/mL to 20 lg/mL for 4 h and 24 h,

so that it could display variable redox-active proper-

ties, according to different system conditions and/or

cellular environment.

Mechanism of action of usnic acid

Several study models (in silico, in vitro and in vivo)

correlate the mechanism of action of usnic acid to

disruption of mitochondrial function, changes in
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oxidative stress and inducing cell death (Pramyothin

et al. 2004; Han et al. 2004; Liu et al. 2012). As usnic

acid is a weak acid of lipophilic characteristic, its

diffusion through the mitochondrial membrane is

favored, causing, for instance, inhibition of ATP

production in the oxidative phosphorylation pathway.

This hypothesis also explains the attractive antimicro-

bial activity of usnic acid since this mechanism does

not allow the respirating microorganisms to perform

the catabolic and anabolic processes essential to their

growth.

The influence of usnic acid on cellular respiration

was first cited by Johnson et al. (1950), who found the

decoupling of oxidative phosphorylation on rat kidney

and liver homogenate, with minimum concentrations

of 1.3-2.6 lg/mL of usnic acid. Since then, scientists

have been sharing findings that highlighted this

hypothesis. Vavasseur et al. (1991) showed the

inhibitory potential of usnic acid on aerobic respira-

tory processes in plant cells of Cormmelina communis.

In this context, given that the mitochondrial path-

ways are important in regulating the stages that

synthetize ATP, if they do not work correctly, the

consequence for any cell that respirates is death. In this

case, the interference in cell respiration and, thus, the

reduction in RNA and protein synthesis, are the main

suggested mechanisms of usnic acid to reduce the

viability of cancer cells (antitumor ability) (Al-Bekairi

et al. 1991), without involve DNA damage (Mayer

et al. 2005). Also, the antitumor effect of UA may be a

consequence of changes in the pH gradient in

carcinogenic cells, as shown in T47D and Capan-2

breast and pancreatic cancer strains, respectively,

when modifications in the proton transporters of the

plasma membrane, generating an electrochemical

gradient, were visualized, allowing the accumulation

of weak acids inside (Bessadottir et al. 2012).

Abo-Khatwa et al. (1996) had previously reported

that rat hepatocytes mitochondria membranes were

affected by usnic acid, vulpinic acid and atranorin in

the same way as do 2,4-dinitrophenol—the standard

uncoupling substance. On the other hand, Fujimoto

et al. (2020) described that at concentrations of 10 lM

and 30 lM, usnic acid could inhibit mitochondrial

ATP production, while Pramyothin et al. (2004) found

that (?) usnic acid altered the integrity of the

membranes of hepatocytes, allowing the release of

hepato-specific enzymes (aspartate aminotransferase

and alanine aminotransferase), especially

transaminase, and destroying mitochondrial function.

Still in (2004), Han et al. used murine models to show

98 and 100% of tissue necrosis (hepatotoxicity) after

treating hepatocyte cultures with 5 mM and 10 mM of

usnic acid, respectively. In addition, up to 90%

reduction in ATP levels and inhibition of mitochon-

drial respiration were observed. The authors also

identified a direct inhibition of mitochondrial function

that lead to decreased oxygen uptake by the electron

transport chain, and, consequently, to cell death.

Once that decoupling action of oxidative phospho-

rylation leads to disorders in the cell’s energy

metabolism, 13C isotopes were used by Sonko et al.

(2011) to monitor glucose metabolism in hepatocytes

during cytotoxicity induced by low concentrations of

usnic acid (1–5 lM), and indicated that increased

oxidative phosphorylation may occur as a cellular

adaptive response compensating for decreased mito-

chondrial function. Such influence was readily clari-

fied when Moreira et al. (2013) observed that low

concentrations of usnic acid (1–5 lM) stimulated

oxygen consumption, reducing mitochondrial NADH/

NAD? ratio, and strongly inhibited gluconeogenesis,

but induces glycolysis, b-oxidation, fructolysis,

glycogenolysis, ammoniagenesis and inhibits ureoge-

nesis, causing delay of ketogenesis. In contrast, high

concentrations of UA (10 lM) blocked the electron

transport chain and the oxidation of medium chain

fatty acids. Therefore, these combined deleterious

events lead to decreased hepatic glycolysis, brain

ketone demand and increased ammonia production.

With the same logic, in silico studies support the

hypothesis that exposure to usnic acid causes distur-

bances in the energy metabolism of amino acids, lipids

and nucleotides through oxidative stress (Lu et al.

2011).

Recently, Antonenko et al. (2019) performed a

thorough investigation of effects of usnic acid and its

analogues on artificial planar bilayer lipid membrane

(BLM), rat liver mitochondria and bacteria, and found

that all of the three hydroxyl groups of usnic acid

appeared to be involved in its proton-shuttling activity

on BLM. The authors evidenced the uncoupling

activity of UA on mitochondrial respiration, attesting

first the chelating properties of usnic acid with calcium

(through the metal extraction method). Then, after the

formation of complexes of UA-Ca-UA, extracting

calcium ions from a hydrophilic medium to a

hydrophobic medium, the authors found, for
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decoupling studies, that UA suppressed the rat liver

mitochondrial membrane potential at a much lower

concentration when compared to its analogs (UA

molecules with chemical modifications in hydroxyls),

and the UA action on mitochondrial membrane

potential was suppressed in the presence of the

calcium ionophore A23187.

In addition to biochemical and histopathological

studies contributing to unravel the mechanism of

action of usnic acid, molecular biology tools have

been used to obtain data that culminate in the

elucidation of the cellular pathways involved with

the fascinating biological effects of UA. For this

purpose, the genomic analysis showed the expression

of genes involved with proton transit against the

mitochondrial electron gradient (Bessadottir et al.

2012), electron transport chain complexes I–IV, fatty

acid oxidation, the Krebs cycle and apoptosis (Joseph

et al. 2009; Bessadottir et al. 2012). Concomitantly,

proteins involved with the expression of these genes

were identified through proteomics, thus emphasizing

that UA-induced hepatotoxicity is associated with

oxidative stress (Liu et al. 2012). Piska et al. (2018)

described that reactive metabolites formation of UA

might explain its hepatotoxicity.

Among the hundreds of proteins related to the UA

mechanism of action, the detection of heat-shock

protein 60, Apo AI, peroxiredoxin proteins (Prx4), and

endoplasmic reticulum protein 29 (ERp29) explain the

involvement of the lichen molecule in oxidative stress.

Mitochondrial disease, in the removal of cholesterol

and its consequent slimming effect, and the induction

of apoptosis (Liu et al. 2012). Therefore, it is

concluded that decoupling action of UA on the

oxidative phosphorylation, initially suggested in the

1950s, has been confirmed through different studies

(in silico, in vitro and in vivo) and tools (biochemistry,

histopathology, genomics and proteomics).

Nanotechnological applications

As discussed in this paper, it is possible to observe the

most diverse and promising biological activities of

UA. However, limitations to its therapeutic applica-

tion, such as hepatotoxicity, low water solubility, and

consequently reduced efficacy, have driven the devel-

opment of innovative alternatives, such as its

encapsulation in controlled release systems—an

attractive tool of pharmaceutical nanotechnology.

Controlled drug release systems allow to modulate

the release of the encapsulated active ingredient in

concentrations within the therapeutic range, causing a

reduction in the dosage regimen and increasing its

efficacy by minimizing side effects (Tiwari et al.

2012). In this sense, the UA-encapsulation has become

a promising strategy to overcome its physicochemical,

toxicological obstacles, and enhance its biological

purposes.

In (2004), Ribeiro-Costa et al. described for the first

time the UA-encapsulation in microspheres formed by

lactic acid and glycolic acid copolymer (PLGA). The

authors evaluated the UA antitumor activity in vivo

(rats), in both its free and microencapsulated forms.

The UA-treated group, in its free form, had a 42% of

tumor inhibition compared to the control group, while

a 63% of tumor inhibition was obtained for the UA-

microsphere treated group, resulting in a significant

gain of 21%. Thus, the potentiation of the antitumor

activity of encapsulated UA has stimulated further

studies on the encapsulation of this molecule in others

delivery systems, to explore its various biological

activities. Then, PLGA nanocapsules with UA

extracted from Cladonia substella (1 mg/mL) were

developed and again the potentiation of antitumor

activity was evidenced against NCI-H 292 cancer cells

(Santos et al. 2005). In this study, the UA-nanoencap-

sulation promoted 68% tumor inhibition, whereas free

UA treatment achieves 45% of tumor inhibition.

In (2006), Santos et al. described in vivo activity

against Sarcoma-180, and an increase of 25% in the

tumor control was found to the nanocapsulated UA

form compared to the same dosage (15 mg/kg/day) of

the free form. In addition, through biochemical and

histopathological analyzes, it was found that there was

a reduction in the toxicity of UA-nanocapsulated after

the intraperitoneal administration to mice.

To explore antimicrobial activity, liposomes con-

taining UA have been produced and evaluated (Lira

et al. 2009a, b; Francolini et al. 2019b). The results

showed that the MIC of free and encapsulated UA

(UA-LIPO) was 6.5 and 5.8 lg/mL, respectively.

Concerning the IC50, the results showed values of 22.5

(± 0.60) and 12.5 (± 0.26) lg/ml for free UA and

Lipo-UA, respectively. The results indicated a strong

interaction between liposomes and J774 macrophages,

facilitating the UA penetration in these defense cells,
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as well as the potentiation of its activity against M.

tuberculosis after nanoencapsulation (Lira et al.

2009b). Ferraz-Carvalho et al. (2016) studied the

effect of UA-encapsulation in liposomes (Lipo-UA) in

combination with rifampicin (Rif) and isoniazid (INH)

against clinical isolates of Multi TB-Resistant Drug

(MDR-TB). The MIC found was 31.25 and 0.98 lg/

mL for free UA and Lipo-UA, respectively. The

results also pointed out a synergism (fractional

inhibitory concentration index) between the Rif and

UA (FICI = 0.31) and between Rif and LIPO-UA

(FICI = 0.28). INH, on the other hand, did not show

synergism with free UA or Lipo-UA (FICI:

1.30–2.50). Thus, the authors concluded that UA-

loaded liposomes could be used to optimize the

antimycobacterial activity of rifampicin, a first-line

drug used to treat tuberculosis.

Another approach described in the literature was

the UA complexation in cyclodextrins and the encap-

sulation of liposome inclusion complexes, aiming to

develop systems to enhance the UA-antimicrobial

property (Lira et al. 2009a). The complexation mech-

anism of the inclusion between UA and cyclodextrin

was investigated by isothermal titration calorimetry

(ITC) and phase-solubility diagrams, using pH as a

tool for modifying the molecule ionization, as

described by Segura-Sanchez et al. (2009).

More recently, other UA-nanosystems have been

developed for antimicrobial activity. Examples

include magnetic nanoparticles (Taresco et al. 2015),

silver nanoparticles (Siddiqi et al. 2018), copper plus

silver nanoparticles (Alavi and Karimi 2019), and

microparticles with antibacterial activity (Martinelli

et al. 2014).

The UA-encapsulation in nanosystems offer new

perspectives for its use in the most varied therapeutic

approaches, providing significant improvement of its

action. In order to summarize the scientific papers

approached in the area, a search for scientific papers

was performed in the SCOPUS database, using the

descriptors ‘‘nanoparticle’’ and ‘‘usnic acid’’, to

understand which nanosystems are currently being

used to convey usnic acid (Table 3).

Finally, in this review, a survey of the patents that

describe the use of nanotechnology to convey UA in

its most varied applications was carried out, using the

terms ‘‘nanoparticles’’ and ‘‘usnic acid’’ as descriptors

in the ‘‘United States Patent and Trademark Office

Database’’ (Table 4).

Table 3 Descriptive table of nanosystems, as well as the type of biological activity, studied in the respective papers, based on the

search for the keywords ‘‘Usnic acid’’ and ‘‘nanoparticles’’ in the international scientific index database Scopus (www.scopus.com)

Nanosystem Biological activity Main results References

Microspheres of lactic and

glycolic acid copolymer

(PLGA)

Antitumoral activity in vivo in mice Tumor inhibition improvement after

treatment with microencapsulated usnic

acid

Ribeiro-

Costa et al.

(2004)

Nanocapsules of PLGA Antitumoral activity in vitro (cells NCI-H

292)

Usnic acid acts by competing with NCI-

H292 cell growth factors or modifying

cell adhesion mechanisms

Santos et al.

(2005)

Nanocapsules of PLGA Antitumoral activity in vivo (ascites tumor

Sarcoma 180)

Nanoencapsulation increased usnic acid

activity by 26.4% when compared to free

form and reduced hepatotoxicity

Santos et al.

(2006)

Liposome-encapsulated usnic

acid (UA) in combination with

rifampicin and isoniazid.

Antimicrobial activity against multi drug-

resistant clinical isolates of

Mycobacterium tuberculosis (MDR-TB)

Usnic acid was more efficient in the

encapsulated form. Promoting synergism

with rifampicin

Ferraz-

Carvalho

et al.

(2016)

Liposomal UA-cyclodextrin

inclusion complex.

Development of inclusion complexes,

liposome encapsulation and antimicrobial

activity

Improvement in aqueous solubility of usnic

acid as inclusion complexes with

cyclodextrin

Lira et al.

(2009a)

Microparticles of poly(L-lactate)

carboxylate (CPLLAn-UA)

Antibiofilm activity against Staphylococcus
epidermidis

Minimum Inhibitory Concentration [MIC]:

Free UA: 16 lg/mL CPLLA16-UA-:

160 lg/mL. Biofilm reduction (CFU/

mm2): free UA: 1.5-log CPLLA16-UA:

2.5-log

Martinelli

et al.

(2014)
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Conclusion

The scientific community has provided an increasing

contribution in the knowledge of usnic acid—a

compound originally obtained from lichens. This

review aimed to synthesize the state of the art of these

studies, providing information on the improvement of

methods for extraction, characterization,

derivatization and synthesis of usnic acid; on assays

of its biological, pharmacological and toxic (for

humans) activities; on strategies that minimize their

effects toxic; or on the development of biotechnolog-

ical resources that enable their continuous production

with low costs and biomass, generating patents. They

are all promising information for the development of

new and increasingly diverse studies.

Table 3 continued

Nanosystem Biological activity Main results References

Nanoparticles of zinc oxide

(ZnO) with surface modified

with sodium stearate or sodium

stearate and UA

Antimicrobial properties and antibiofilm

against Salmonella enterica, subspecies

enterica serovar typhimurium

Nanoparticles with usnic acid improve the

inhibition of biofilm initial formation (24

and 48 h)

Stan et al.

(2016)

Nanoparticles of gellan gum

modified by heparin

Antitumor properties of HAG-NPs against

lung cancer (A549)

Cell cycle block (G2/M phase) at 80 lg/ml

concentration when compared to control

Garg et al.

(2018)

Liposomes embedded in collagen

polymeric films and UA

In vivo assessment of wound healing from

burns

Modulation of biological events involved in

inflammatory response, epithelialization

and collagen formation

Nunes et al.

(2011)

Metal colloidal nanoformulation

(Uh-Au@Nano-CF)

Inhibition of secretion of virulence factors

regulated by the Quorum-sensing and

prevention of biofilm formation by

Streptococcus mutans

Nanoformulation strongly inhibited the

virulence factors (ATPase, enolase,

protease, LDH and glucosity) regulated

by Quorum-sensing of S. mutans, as well

as biofilm formation, with an inhibition

of 94.17%

Singh et al.

(2014)

Magnetic nanoparticles Antimicrobial activity and antibiofilm

activity against bacteria GRAM?

(Staphylococcus aureus and

Enterococcus faecalis) and GRAM-

(Escherichia coli and Pseudomonas
aeruginosa)

Staphylococcus aureus inhibition between

15.6 and 1.000 lg/mL; Enterococcus
faecalis inhibition between 7.8125 and

1.000 lg/mL; Escherichia coli inhibition

only at 500 and 1.000 lg/mL;

Pseudomonas aeruginosa inhibition

between 3.9 and 1.000 lg/mL

Grumezescu

et al.

(2013)

Nanoparticles of iron oxide

superparamagnetic.

Cytotoxicity studies against MCF-7, HeLa,

L929, U87

Usnic acid-free SPION demonstrated

toxicity to all cell types

Alpsoy et al.

(2018)

Glucosylated liposomes Bacterial infections Glucosylated cationic liposomes promotes

usnic acid penetration in biofilm matrix

Francolini

et al.

(2019b)

Liposomes Antioxidant study Charge and chain influence liposomes

physicochemical properties and the

antioxidant effectiveness of usnic acid

Battista et al.

(2020)
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Correché ER, Carrasco M, Escudero ME, Velázquez L, Guzmán

AMS, Giannini F, Enriz RD, Jaúregui EA, Ceñal JP,
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Vilhelmsdóttir M (1998) Antimycobacterial activity of

lichen metabolites in vitro. Eur J Pharm Sci 6:141–144.

https://doi.org/10.1016/s0928-0987(97)00078-x

Ivanovic J, Meyer F, Misic D, Asanin J, Jaeger P, Zizovic I,

Eggers R (2013) Influence of different pre-treatment

methods on isolation of extracts with strong antibacterial

activity from lichen Usnea barbata using carbon dioxide as

a solvent. J Supercond Fluids 76:1–9. https://doi.org/10.

1016/j.supflu.2013.01.005

Ji X, Khan IA (2005) Quantitative determination of usnic acid in

usnea lichen and its products by reversed-phase liquid

chromatography with photodiode array detector. J AOAC

Int Gaithersburg 88(5):1265–1268. https://doi.org/10.

1093/jaoac/88.5.1265

Johnson RB, Feldot G, Lardy HA (1950) The mode of action of

the antibiotic usnic acid. Ach Biochem 28:317–323

Joseph A, Lee T, Moland CL, Branham WS, Fuscoe JC, Leakey

JEA, Allaben WT, Lewis SM, Ali AA, Desai VG (2009)

Effect of (?)-usnic acid on mitochondrial functions as

measured by mitochondria-specific oligonucleotide

microarray in liver of B6C3F1 mice. Mitochondrion

9:149–158. https://doi.org/10.1016/j.mito.2009.02.002

Kohlhardt-Floehr C, Boehm F, Troppens S, Lademann J,

Truscott TG (2010) Prooxidant and antioxidant behaviour

of usnic acid from lichens under UVB-light irradiation—

studies on human cells. J Photochem Photobiol B

101:97–102. https://doi.org/10.1016/j.jphotobiol.2010.06.

017

Kreft S, Strukelj B (2001) Reversed-polarity capillary zone

electrophoretic analysis of usnic acid. Electrophoresis

22:2755–2757. https://doi.org/10.1002/1522-2683(200108)22:

13%3c2755:AID-ELPS2755%3e3.0.CO;2-6
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tos-Magalhães NS, Thompson AM, Appleyard VCL

(2010) Does usnic acid affect microtubules in human

cancer cells? Braz J Biol 70:659–664. https://doi.org/10.

1590/s1519-6984201000500001

Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici

M, Kazaz C (2006) Gastroprotective and antioxidant

effects of usnic acid on indomethacin-induced gastric ulcer

in rats. J Ethnopharmacol 103:59–65. https://doi.org/10.

1016/j.jep.2005.06.043

Pacheco D, Travassos AR, Antunes J, Soares De Almeida L,

Filipe P, Correia T (2012) Occupational airborne contact

dermatitis caused by usnic acid in a domestic worker.

Allergol Immunopathol 42:80–82. https://doi.org/10.1016/

j.aller.2012.07.017

Pereira EC, Nascimento SC, Lima RMC, Silva NH, Oliveira

AFM, Boitard M, Beriel H, Vicente C, Legaz ME (1994)

Analysis of Usnea fasciata crude extracts with antineo-

plasic activity. Tokai J Exp Clin Med 19:47–52

Piovano M, Chamy MC, Garbarino JA, Quilhot W (2000)

Secondary metabolites in the genus Sticta (lichens). Bio-

chem Syst Ecol 28:589–590. https://doi.org/10.1016/

S0305-1978(99)00092-7

Pires RH, Lucarini R, Mendes-Gianninia MJS (2011) Effect of

usnic acid on Candida orthopsilosis and C. parapsilosis.
Antimicrob Agents Chemother 56:595–597. https://doi.

org/10.1128/AAC.05348-1

Piska K, Galanty A, Koczurkiewicz P, _Zmudzki P, Potaczek J,
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NK, Santos-Magalhães NS (2006) Nanoencapsulation of

usnic acid: an attempt to improve antitumour activity and

reduce hepatotoxicity. Eur J Pharm Biopharm 64:154–160.

https://doi.org/10.1016/j.ejpb.2006.05.018

Santos L, Caramantin Soriano M, Mirabal-Gallardo Y, Carrasco

Sánchez V, Nachtigall F, Pereira I, Pereira E (2015) Che-

motaxonomic fingerprinting of Chilean lichens through

MALDI and electrospray ionization mass spectrometry.

Braz Arch Biol Technol 58(2):244–253. https://doi.org/10.

1590/S1516-8913201400185

Scirpa P, Scambia G, Masciullo V, Battaglia F, Foti E, Lopez R,

Villa P, Malecoe M, Mancuso S (1999) Terapia adiuvante

con um preparato a base di zinco solfato e acido usnico

delle lesioni genitali da Human Papilloma Vı́rus (HPV)

dopo trattamento chirurgico distruttivo. Minerva Ginec

51:255–260

Segatore B, Bellio P, Setacci D, Brisdelli F, Piovano M, Gar-

barino J, Nicoletti M, Amicosante G, Perilli M, Celenza G

(2012) In vitro interaction of usnic acid in combination

with antimicrobial agents against methicillin-resistant

Staphylococcus aureus clinical isolates determined by FICI

and DE model methods. Phytomedicine 19:341–347.

https://doi.org/10.1016/j.phymed.2011.10.012

Segura-Sanchez F, Bouchemal K, Lebas G, Vauthier C, Santos-

Magalhaes NS, Ponchel G (2009) Elucidation of the

complexation mechanism between (?)-usnic acid and

cyclodextrins studied by isothermal titration calorimetry

and phase-solubility diagram experiments. J Mol Recognit

22:232–241. https://doi.org/10.1002/jmr.936

Sharma RK, Jannke PJ (1966) Acidity of usnic acid. Ind J Chem

4:16–18

Sheu M, Simpson EL, Law SV, Storrs FJ (2006) Allergic contact

dermatitis from a natural deodorant: A report of 4 cases

associated with lichen acid mix allergy. J Am Acad Dermat

55(2):332–337. https://doi.org/10.1016/j.jaad.2004.12.043

Shibata S (2000) Great discoveries in bryology and lichenology.

Bryologist 103(4):710–719

Shtro AA, Zarubaev VV, Luzina OA, Sokolov DN, Salakhutdinov

NF (2015) Derivatives of usnic acid inhibit broad range of

influenza viruses and protect mice from lethal influenza

infection. Antiviral Chem Chemother 24(3–4):92–98. https://

doi.org/10.1177/2040206616636992

Siddiqi K, Rashid M, Rahman A, Tajuddin T, Husen A, Rehman

S (2018) Biogenic fabrication and characterization of silver

nanoparticles using aqueous-ethanolic extract of lichen

(Usnea longissima) and their antimicrobial activity. Bio-

mater Res 22:23. https://doi.org/10.1186/s40824-018-

0135-9

Silva CR, Marinho KSN, Silva TDS, Ferreira DKS, Aguiar GM,

Martins MCB, Santos KRP, Aguiar Junior FCA, Santos

NPS, Pereira EC, Silva NH (2017) Teratogenic effect of

usnic acid from Cladonia substellata vainio during

organogenesis. BioMed Res Int. https://doi.org/10.1155/

2017/5948936

Singh B, Prateeksha G, Pandey G, Jadaun V, Singh S, Bajpai R,

Nayaka S, Naqvi S, Rawat A, Upreti D, Singh B (2014)

Development and characterization of a novel Swarna-

based herbo-metallic colloidal nano-formulation-inhibitor

of Streptococcus mutans quorum sensing. RSC Adv

5:5809–5822. https://doi.org/10.1039/C4RA11939H

Siqueira-Moura MP, Lira MCB, Santos-Magalhães NS (2008)
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